Diffuse stylohyoid chain ossification

Selma Uysal Ramadan, Dilek Gökharman, Mahmut Kaçar,UGHUUR Koşar

From the Department of Radiology (S.U.R. uysalselma@yahoo.com), Ankara Training and Research Hospital, Ankara, Turkey.

Received 22 August 2006; revision requested 28 October 2006; revision received 07 November 2006; accepted 5 December 2006.

ABSTRACT
Clinical symptoms of stylohyoid chain ossification vary from ear pain to dysphagia. It is usually diagnosed coincidentally. Localized ossification of the chain is common, whereas diffuse ossification is rare. Herein, a case with bilateral diffuse stylohyoid chain ossification diagnosed with computed tomography, which was performed in order to evaluate the patient’s temporomandibular joint pain, a rare onset of this condition, is discussed.

Key words: • temporomandibular joint • deglutition disorder • tomography, spiral computed

The bone and ligament complex that extends from the base of temporal bone styloid process to the minor horn of the hyoid bone is known as the stylohyoid chain. That chain shows many variations among populations, especially as styloid process elongation. Various clinical conditions, like dysphagia, tinnitus, jaw pain, and ear pain, may arise related to these variations and these symptoms usually delay diagnosis or are overlooked (1, 2).

Herein, a case with diffuse bilateral stylohyoid chain ossification diagnosed with computed tomography (CT), which was performed in order to evaluate the patient’s temporomandibular joint pain, a rare onset of this condition, is discussed.

Case report
A 72-year-old male presented with long-lasting temporomandibular pain. On physical examination, the temporomandibular joint motion was natural, although there were questionable solid lesions bilaterally at the submandibular regions. CT examination of the joints was planned, as the major symptom of the patient was arthralgia. Laboratory findings were normal. CT examination of the temporomandibular joint did not reveal any specific findings that would clarify the cause of the chronic joint pain (Fig. 1). On the other hand, CT images indicated bilateral diffuse and thick ossifications of the stylohyoid chain (58 mm on the right and 57 mm on the left) extending from the styloid process to the minor horn of the hyoid bone. A gap was observed between the second and third sections of the chain where no ossification was evident (Fig. 2). As there was the presentation of a cortex and smooth margins on the edges of this gap, the possibility of fraction on the chain was not considered. No significant pathology in the adjacent neck structures was observed. Reassessing the history of the patient, his long-lasting dysphagia was striking. The case was considered to be inoperable because of his advanced age and he was given anti-inflammatory drugs palliatively. Partial resolution of his symptoms was achieved.

Discussion
The stylohyoid chain that extends between the temporal and hyoid bones is divided into 4 sections: the tympanohyal (the base of styloid process), the stylohyal (forms the major portion of styloid process), the ceratohyal (forms the stylohyoid ligament), and the hypohyal (forms the minor horn of the hyoid bone). The first 2 sections form the stylohyoid process. Cartilage that is embryologically located at the stylohyoid ligament may undergo calcification of varying degrees, which causes variations. Ossified stylohyal ligament parts may merge or leave gaps in between. These ossifications may arise where the stylohyoid ligament attaches to the sty-
Diffuse stylohyoid chain ossification

Diffuse stylohyoid chain ossification is one of the rarest variations (1, 3, 8). In a study by Başekim et al. that included 138 patients, diffuse ossification was not encountered (8). Diffuse ossification differs from other variations as it affects the entire chain; thus, it may restrict head and neck motion. The mechanism by which head motion remains unaffected is probably relayed to non-ossified regions on the chain, or the fracture of the ossified chain at its weakest point during movement or trauma (3, 7, 14, 15). In particular, if a patient history includes trauma, it can be difficult to distinguish fractures of the segmentary ossified chain or non-ossified regions between the ossified sections. Usually, pain caused by fractures is not clinically significant because of accompanying major trauma (7). In case of displacement or pseudoarthrosis at the fracture site, diagnosis becomes easier while using direct X-ray images or CT, although CT would more accurately discriminate in such conditions. Visualization of the cortex at the edges of the bone, and a smooth

Figure 1. On coronal CT sections, it is possible to evaluate the parts of the stylohyoid chain bilaterally (2: tympanohyal and stylohyal segments; 3: ceratohyal segment; 4: hypohyal segment). Sections contain diffuse ossification extending towards the hyoid bone (H), and the gap in between.

Figure 2. Anteroposterior (a) and oblique (b) 3D-CT images show ossification of the entire stylohyoid chain with a gap (arrows) between the second and third sections (1: tympanohyal segment; 2: stylohyal segment; 3: ceratohyal segment; 4: hypohyal segment; H: hyoid bone).

There is no direct correlation between age, sex, and symptoms, and contradictory results were obtained (3, 7, 8, 11, 13).

It can be concluded that diffuse ossification of the stylohyoid chain is one of the rarest variations (1, 3, 8). In a study by Başekim et al. that included 138 patients, diffuse ossification was not encountered (8). Diffuse ossification differs from other variations as it affects the entire chain; thus, it may restrict head and neck motion. The mechanism by which head motion remains unaffected is probably relayed to non-ossified regions on the chain, or the fracture of the ossified chain at its weakest point during movement or trauma (3, 7, 14, 15). In particular, if a patient history includes trauma, it can be difficult to distinguish fractures of the segmentary ossified chain or non-ossified regions between the ossified sections. Usually, pain caused by fractures is not clinically significant because of accompanying major trauma (7). In case of displacement or pseudoarthrosis at the fracture site, diagnosis becomes easier while using direct X-ray images or CT, although CT would more accurately discriminate in such conditions. Visualization of the cortex at the edges of the bone, and a smooth
and fusiform cortical surface helps to eliminate chain fracture as a diagnostic possibility (14, 15).

In conclusion, radiological evaluation of the stylohyoid chain in patients with non-specific symptoms, or with indistinct clinical and laboratory findings, may help clinicians to more accurately diagnose the situation.

References