Radiologic findings in malignant gastrointestinal stromal tumors

Şerife Ulusan, Zafer Koç

Gastrointestinal stromal tumors (GISTs) are rare (1) but are the most common mesenchymal neoplasms in the gastrointestinal (GI) tract. These nonepithelial tumors arise from the muscularis propria in the wall of the GI tract and are thought to originate from Cajal cells in the interstitium of intestinal pacemaker tissue (1, 2) (Fig. 1). The most frequent site of occurrence is the stomach (60% of all cases) (Fig. 2), followed by the small bowel (30%) (Fig. 3), and other sites (colon and rectum, 5%) (Fig. 4), and the esophagus (<5%) (1–4). GISTs also may develop as primary tumors of the omentum, mesentery, or retroperitoneum. They account for 1% to 3% of all gastric neoplasms, 20% of all small bowel tumors, and 0.2% to 1% of all colorectal tumors (1–5). Earlier medical reports refer to these tumors as leiomyomas, leimyoblastomas, leiomyosarcomas, or schwannomas. However, in 1983, electron microscopy and immunohistochemistry studies revealed that these lesions contain no smooth muscle or Schwann cells, so the nomenclature was changed to GIST.

GISTs are classified as spindle cell, epithelioid, or pleomorphic mesenchymal tumors of the GI tract (1–5). All express KIT protein (CD117 stem cell factor receptor), which can be detected immunohistochemically (1–5). KIT is a type-3 receptor tyrosine kinase that is important for the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, interstitial cells of Cajal, and the pacemaker cells of the GI tract that GIST cells most closely resemble. KIT-activating mutations are found in 85% to 90% of GISTs (6). In recent years, immunohistochemical staining for KIT (CD117) has become integral to the diagnosis of GISTs, nearly 90% of which harbor activating mutations in the KIT receptor tyrosine kinase gene. Approximately 80% of patients with metastatic GISTs show at least some clinical response to the targeted small-molecule KIT inhibitor, imatinib (6). The response to imatinib is closely correlated with the presence and type of KIT mutation. GISTs with the most common KIT exon 11 mutations have the highest response rate by far, whereas GISTs lacking mutations in KIT or the alternative receptor tyrosine kinase PDGFRα (platelet-derived growth factor receptor) show much lower rates of response to imatinib. Less than 5% of GISTs are KIT-immunonegative, and many of these tumors have activating mutations of PDGFRα, some of which are also inhibited by imatinib (6).

Seventy percent to 80% of GISTs are benign, and such tumors are often found incidentally at surgery and excised in the same session. Approximately 20% to 30% of GISTs are malignant, and these neoplasms are identified based on their mitotic index, tumor necrosis index, and Ki-67 index (which reflects expression of the 395 kDa nuclear antigen MIB-1). According to recent pathological studies, high values for these parameters are the most important prognostic factors for metastasis and mortality in this patient population (1–5). Some characteristic comput-
ed tomography (CT) features of malignant GISTs have been established: lesion size exceeding 5 cm diameter, irregular surface, indistinct margins, tissue invasion, heterogeneous contrast enhancement, hepatic metastases, and peritoneal dissemination. Metastatic lymphadenopathy is uncommon with this type of tumor (7–12).

The exact distribution of the GISTs is not clearly known. It is estimated that the frequency of GIST in the general population is 10 to 20 cases per million (2). Most patients are older than 50 years at the time of presentation. In young adults and children, GISTs are very rare and are sometimes associated with familial disorders, such as neurofibromatosis type 1 (13). The clinical presentations of these tumors vary according to their site and size. The size of the tumor ranges from 0.5 to 21 cm, with a mean of 6.8 cm. Imaging and

Figure 1. The growth pattern of gastrointestinal stromal tumors. White arrow indicates intraluminal portion, and black arrow shows extraluminal components of the tumor.

Figure 2. a, b. A 65-year-old man who presented with abdominal pain. Axial CT images (a, b) before (a) and after contrast-enhancement (b) show a heterogeneous soft-tissue mass involving the gastric wall, with calcification (white arrows, a). The black arrow (b) indicates ulceration of the overlying mucosa of the tumor.

Figure 3. a, b. A 45-year-old woman who presented with gastrointestinal bleeding and abdominal pain. Contrast-enhanced axial (a) and coronal (b) CT images show a soft-tissue mass involving the muscularis propria of the second part of duodenum. The mass with cysts and cavity communicates with the duodenal lumen and contains air and air-fluid levels (arrows, a).
operative incidental findings are common. The most common presentation in symptomatic GISTs is gastrointestinal bleeding caused by ulceration of the overlying mucosa of the tumor. Patients may sometimes present with symptoms of anemia caused by occult bleeding (e.g., melena). Other clinical presentations are associated with the location of the tumor. For example, these symptoms may be nausea, vomiting, abdominal pain, obstructive jaundice (Fig. 5), and vague mass and abdominal distension.

Cross-sectional imaging findings

The most common location for GISTs is the stomach. The CT features of gastric GISTs are typical. CT scans show a large mass with solid or cystic components (Fig. 6). The tumor originates in the gastric wall and extends into the adjacent structures including the mesenteric fat plane, the gastrohepatic ligament, or the omentum. The adjacent organs and mesenteric fatty planes may be displaced where GISTs invade. CT also may show ascites where the tumor has spread into the omentum or peritoneal cavity; liver metastases may also be present. However, metastatic lymphadenopathy is not a common feature in patients with GISTs.

Magnetic resonance imaging (MRI) features of gastric GISTs vary, owing to the degree of necrosis and hemorrhage that affect the signal-intensity pattern. The solid components of the tumor generally appear as low signal intensities on T1-weighted images, and...
high signal intensities on T2-weighted images and after enhancement with gadolinium (Fig. 7). Depending on the age of the hemorrhage, portions of hemorrhage within the GIST vary from high to low signal intensity on both T1- and T2-weighted images.

In many cases, the extragastric or extraintestinal portion is so large that it is difficult to determine the origin of the tumor on the intestinal wall with CT or MR images (Fig. 8). The tumor is sometimes attached to the intestinal wall via a thin pedicle.

A peripheral solid-component enhancement pattern shows viable areas; central areas of low density correspond to hemorrhagic, cystic, or necrotic components. These cysts and cavities may communicate with the intestinal lumen and contain air, air-fluid levels, or oral contrast media (Fig. 3). Calcifications are rare features of GISTs. A GIST with a circumferential growth pattern is considered an aneurysmal dilatation of the affected colonic or small intestine segment (Fig. 9).

The differential diagnosis for GISTs should be made according to the tumor location. For example, the differential diagnosis of gastric GISTs must include other mesenchymal neoplasms such as leiomyomas, leiomyosarcomas, schwannomas, neurofibromas, and neuroendocrine neoplasms. The imaging findings of all of these neoplasms

Figure 7. a–d. A 56-year-old man who presented with a palpable epigastric mass that originated in the stomach (st) wall. (a) Axial postcontrast CT, (b) axial T1-weighted, (c) coronal T2-weighted, and (d) axial postcontrast T1-weighted MR images show an epigastric mass (arrows) that included cystic and solid components and heterogeneous enhancement of the lesion. The mass is adjacent the left lobe of the liver.

Figure 8. A 61-year-old woman who presented with a palpable pelvic mass. Contrast-enhanced axial CT image shows huge pelvic lesion (mimicking ovarian mass) and white solid components at the periphery of the cystic lesion involving the muscularis propria and serosa of ileum (white arrows).
are similar to GISTs because they, too, originate from the gastric wall.

Gastric adenocarcinomas and lymphomas also should be considered in the differential diagnosis of gastric GISTs. Although gastric carcinomas and lymphomas commonly have associated regional lymphadenopathy, lymphadenopathy is not a feature of malignant GISTs.

The differential diagnosis for GIST in the small intestine includes adenocarcinoma and lymphoma. The presence of associated lymphadenopathy is the most important clue for the diagnosis of lymphoma. Although anorectal and colonic GISTs are rare, the differential diagnoses of these tumors are similar to those of gastric and small bowel GISTs.

The most important complications of GIST are hemorrhage and spontaneous rupture into the peritoneal or endoluminal cavities caused by emergent laparotomies.

GISTs often metastasize to the liver and the peritoneum. However, pulmonary metastases are rarely seen. The CT or MRI appearance of metastases after the administration of intravenous (IV) contrast media generally correlates with the degree of tumor vascularity. On enhanced CT, most lesions appear as hypodense or isodense compared with the adjacent parenchyma, with the exception of retained hemorrhage, proteinaceous material, or calcifications (14) (Fig. 10).

The best therapy for patients with GISTs has been surgical resection of the tumor. Conventional chemotherapeutic agents and radiation are rarely effective against GISTs. Recently, a clinical trial of STI-571 (Gleevec®, Novartis, Basel, Switzerland), a first-generation tyrosine kinase inhibitor with high specificity for the tyrosine kinase c-KIT, was used for unresectable or metastatic disease. On follow-up CT, hepatic and peritoneal metastases showed significantly decreased attenuation and development of a cyst-like appearance. Gleevec® has proved to be a breakthrough drug with remarkable efficacy for treating metastatic GIST (14, 15). Understanding the unusual appearances of GISTs is important because radiologists can misinterpret cystic-appearing hypodense liver lesions after Gleevec® treatment as active disease (Fig. 11).

If CT scans are performed as single-phase studies, it is possible that hypervascular foci may be missed on the venous phase of the study. For this reason, MRI with gadolinium is better at detecting the internal structure, particularly the foci of hypervascularity of treated liver metastases (15). It is likely
that contrast-enhanced MRI or dual-phase CT may be superior to single-phase CT in assessing disease response to Gleevec® therapy and identifying those at risk of relapse. Mesenteric metastases are better seen on CT than on MRI examination (3).

Gastrointestinal stromal tumors are mesenchymal tumors on the muscularis propria of the gastrointestinal tract wall. CT and MRI can be useful cross-sectional imaging modalities for the diagnosis, staging, and follow-up of patients with GISTs.

References