Joubert et al. first described in 1969 four siblings who had episodes of abnormal breathing and eye movements, ataxia, and mental retardation in association with vermian agenesis and meningoencephalocele in one sibling (1). The name Joubert syndrome (JS) was given several years later when an additional set of patients with similar findings was reported. The neuroradiological hallmark of JS is a complex midbrain-hindbrain malformation that creates the molar tooth sign (MTS): (i) thinning of the isthmus with widened interpeduncular fossa; (ii) thickened superior cerebellar peduncles lying perpendicular to the dorsal pons; (iii) hypoplasia of the vermis with enlargement of the fourth ventricle and rostral shift of the fastigium; and (iv) sagittal vermian cleft due to incomplete fusion of the two halves of vermis (2). The absence of a normal vermis leads midline apposition of the cerebellar hemispheres and results in characteristic “batwing” appearance of the fourth ventricle on transverse imaging (3). There is a group of conditions, termed Joubert syndrome-related disorders (JSRDs) with clinical and radiological evidence of JS associated with additional findings and variable involvement of other organs and systems, mainly the eyes and kidneys.

Although hindbrain malformation has been well described in the literature, there appears no detailed study concerning coexisting structural abnormalities in JS, to the best of our knowledge. In this retrospective study, we aimed to investigate the cranial malformations other than MTS in JS and their frequency.

Materials and methods

Cranial magnetic resonance imaging (MRI) of 20 patients (age range, 18 months–17 years; male/female, 13/7) diagnosed with JS by two experienced pediatric neurologists (GH, MT) were reviewed. Brain MRIs of the patients were performed on a 1.5-T system (Magnetom, Symphony, Siemens Medical Systems, Erlangen, Germany) between 2002 and 2008. All patients had at least the following MR sequences: axial and sagittal T1-weighted (W) spin echo (SE) (TR/TE, 500–600/12 ms; matrix, 192–256; field of view, 230–230 mm), axial and coronal T2W SE (TR/TE, 4000–5000/100 ms; matrix, 192–256; field of view, 230–230 mm), and axial fluid-attenuated inversion-recovery (FLAIR) (TR/TE/TI, 8500/98/2150 ms; matrix, 192–256; field of view, 230–230 mm). Two neuroradiologists (KKO, EUS) evaluated MR images in consensus. Following assessment of cerebellar vermis, cerebellar peduncles, and mesencephalon, special attention was paid to evaluation of supratentorial structures and cerebellum. Abnormalities other than MTS were noted.

Results

All the patients met the primary criteria established by Valente et al. (4). MRI findings are summarized in Table. Seventeen of 20 patients...
had typical molar tooth appearance, and 3 had mildly thickened and horizontally oriented superior cerebellar peduncles (Fig. 1a). Cerebellar folial disorganization (Fig. 1b) was detected in 5 (25%) patients. Atretic encephalocele and a lipoma in the ambient cistern which was 5 mm in size (Fig. 1c) was accompanying in 1 (5%) patient. The corpus callosum (CC) was dysgenetic (Fig. 2a) in 16 patients (80%), and normal in 4 patients. Sixteen patients (80%) had hippocampal developmental abnormality (Fig. 2b). Temporal lobe hypoplasia (Fig. 2b) was detected in 5 (25%), periventricular and subcortical heterotopia (Fig. 2d) in 1 (5%), perisylvian polymicrogyria and enlarged caudate nuclei in 1 (5%), hypomyelination in 1 (5%), supratentorial ventricular dilatation in 2 (10%) and frontal parenchymal cyst in 1 (5%) patient. There were also nonspecific white matter hyperintensities in 4 patients (20%) and bilateral hyperintense globus pallidus on T1W imaging in a patient with known congenital hepatic fibrosis.

Discussion

The identification of a neuroradiological hallmark of the MTS greatly improved the ease of diagnosing JS. Furthermore, a large number of disorders which display MTS on imaging and variable involvement of other organs and systems—such as the eyes, kidneys, and liver, including occipital (meningo)encephalocele, polydactyly, bilateral ocular colobomas, retinal involvement (in the form of chorioretinal dysplasia, retinal degeneration or Leber congenital amaurosis), cystic kidneys, and autistic behavioral spectrum have been recognized. These disorders were first described in 1999 by Satran et al. (5) as “cerebello-oculo-renal syndromes” (CORS), and later expanded by Gleeson et al. (6), who listed eight distinct conditions under the term “Joubert syndrome-related disorders (JSRDs).”

Recently, Valente et al. (4) made a new, simplified nosological classification of JSRDs, and indicated that the main neurological signs of JSRD of hypotonia, ataxia, developmental delay, and oculomotor apraxia, along with a neuroradiologically proven MTS, rep-
resent the unique mandatory features to diagnose JSRD (primary criteria). Six subgroups of JSRDs were then defined on the basis of additional clinical criteria (4).

Central nervous system (CNS) abnormalities other than MTS, such as CC dysgenesis, hydrocephalus, encephalocoele, and polymicrogyria, may also be present in all subgroups according to these expanded classifications. Reviewing the literature, we noted that there were few reported cases of supra- and infratentorial abnormalities accompanying brainstem and vermian dysgenesis in JS. Quisling et al. (2) described prominent subarachnoid spaces and ventriculomegaly in a third of the patients in their study. Delayed myelination, fluid collections in posterior fossa resembling Dandy-Walker malformation, hydrocephalus, occipital encephalocoeles or meningoceles, agenesis of the CC, polymicrogyria and/or cortical dysplasia, and lissencephaly were described in individual cases. Cerebellar heterotopia has also been noted (7–9). We were unable to find any case of cerebellar folial disorganization, temporal lobe hypoplasia, and ambient cistern lipoma with JS/JSRD in the literature. In our study, callosal dysgenesis and hippocampal malformations were the most frequent coexistent abnormalities, with a frequency of 80%. There are reported cases of callosal dysgenesis; however, to the best of our knowledge, associated hippocampal malformations have not been reported previously. Patients with JS may have epilepsy and detailed examination of these structures can give a clue for seizure etiology. In fact, co-occurrence of CC dysgenesis and hippocampal malformation, most probably due to timing of the insult, has been well described in the literature (10). Other than callosal dysgenesis, hippocampal malformations have been reported with various congenital malformations, including disorders of neuronal migration, non-callosal midline anomalies (including abnormal anterior or hippocampal commissures and interhemispheric cysts and lipomas), and abnormalities of the cerebellum or brainstem (11). Hippocampal malformations including shape and position abnormalities occur at 10 to 30 weeks of gestation (12), whereas CC develops between 8 and 20 weeks of gestation (7). At 5–10 weeks of gestation, the prechordal mesoderm induces face and forebrain, the rhombencephalon gives rise to the cerebellar hemispheres and vermis, and the myelencephalon gives rise to the medulla and pons. Insult during this period may result in MTS of JS, cerebellar hypo-/dysplasia, and facial anomalies. Since formation of the germinal matrix occurs at about 7 weeks’ gestational age and neuronal migration from germinal matrix to cortex and subsequent layering take place between weeks 6–7 through 24–26, one can expect accompanying migrational abnormalities in JS. An insult at 3–4 weeks of gestation, when chordal mesoderm induces the neural plate, followed by closure of the neural plate and then the neural tube, may result in cephaloceles or myelomeningocele (13). It is concluded that genetic and environmental factors during this developmental period (most probably between 3 weeks and 26 weeks of gestation) may cause embryological abnormalities, affecting both supra- and infratentorial structures (7). Today, JSRDs are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle (14). Recently Gorden et al. (14) identified loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease.
Conventional cranial MRI features of JSRD are well known today. In a functional MR imaging study, Parisi et al. (15) demonstrated a striking bilateral activation of the sensorimotor and cerebellar cortex in a patient with JS, in contrast to the typical highly lateralized activation seen in control subjects. Using diffusion tensor imaging and tractography, Lee et al. (16) showed thickened superior cerebellar peduncles in three patients, and Widjaja et al. (17) found horizontally oriented superior cerebellar peduncles that failed to decussate and laterally located deep cerebellar nuclei in two patients with JS. Poretti et al. (18) showed the absence of decussation of the superior cerebellar peduncles and corticospinal tract and the more lateral localization of the deep cerebellar nuclei.

Reported neuropathologic abnormalities are limited to hindbrain structures. These include distorted band-like structure of the dentate nuclei and grouping of its neurons into clusters or islands (many small islands of heterotopic gray matter scattered throughout the white matter), and abnormalities in the medulla, including dysplasia of the nuclei and tracts (19, 20). Extensive brainstem malformation may explain the oculomotor apraxia and hyperpnea (21).

The recurrence risk is 25% (22), and an antenatal investigation of JS by ultrasound and/or MRI must be performed in cases with a sibling with JS (23).

In conclusion, revealing that a wide range of CNS abnormalities may coexist with characteristic MTS, this study supports heterogeneity in this complex syndrome derived from genetic studies and phenotypic observations. Further embryological, molecular, and genetic studies are needed to understand the underlying pathologies that affect various anatomic structures in JS. More detailed analysis with high-resolution imaging is needed for better definition of overlapping and distinct neuroanatomic features. In clinical practice, radiologists should scrutinize abnormalities other than molar tooth malformation, since in some situations it is these accompanying findings that may explain the symptoms of patients.

References