Multidetector CT technique and imaging findings of urinary stone disease: an expanded review

Barış Türkbey, Erhan Akpınar, Çiğdem Özer, Evrim Bengi Türkbey, Volkan Eken, Muşturay Karçaaltıncaba, Okan Akhan

ABSTRACT
Unenhanced computed tomography (CT) is currently being widely used for the evaluation of patients presenting with acute flank pain. A variety of primary and secondary findings detected on unenhanced CT contribute not only to the diagnosis but also to the treatment plan. This review includes primary and secondary multidetector CT imaging findings of urinary stone disease, potential pitfalls with exquisite images of sample cases, and a brief review of radiation dose reduction and contrast administration strategies.

Key words: • urinary tract stones • computed tomography • flank pain

Acute flank pain is a common clinical entity that can be secondary to urinary and extramurinary causes; urinary stone disease appears to be the most common cause and affects 3–5% of the population in the Western world (1). An ideal imaging modality should provide information not only about the presence or absence of urinary tract stones but also about its size, site, composition, and related complications such as obstruction. Optimal radiological evaluation has a central role in the management of patients with acute flank pain (2–4).

Urinary stone disease affects males twice as females and peaks around the age of 30 years in males and between 35 and 55 years among females. Several conditions were identified as predisposing risk factors such as positive family history, geography, diet, obesity, recurrent urinary tract infection, insulin resistance, prolonged immobilization; moreover, specific entities such as idiopathic hypercalciuria, secondary hypercalciuria, hyperuricosuria, and type I renal tubular acidosis were also defined (5).

Urinary tract stones vary according to their chemical composition: 34% of them consist of calcium oxalate and phosphate, 33% consist of pure calcium, 6% of pure calcium phosphate, 15% mixed struvite and apatite, 8% uric acid, and 1% cystine (6).

The common symptoms of urinary stone disease are colicky pain and hematuria. Pain generally starts suddenly in the flank region and increases rapidly often requiring analgesics for relief; as time passes pain may radiate to lower abdomen, into scrotum or labia as stone moves distally within the urinary tract (2, 7). Other symptoms may include nausea, vomiting, and dysuria (7).

Unenhanced multidetector computed tomography (MDCT) in the diagnosis of urinary stone disease

Imaging indications for urinary stone disease are: i) to establish the diagnosis; ii) to assess the stone burden within the urinary system; iii) to determine the pelvicalyceal anatomy; iv) to plan the treatment; v) to evaluate the outcome of treatment; vi) to assess the complications (8).

Basic principles and technique

In 1995 Smith et al. introduced unenhanced helical computed tomography (CT) as an initial imaging modality for patients with acute flank pain referred for urinary stone disease management (9). Since then, unenhanced helical CT has been widely accepted as a rapid and accurate diagnostic imaging modality replacing other techniques (10). Unenhanced CT is not a standard abdomen CT imaging procedure, and it avoids the use of intravenous contrast material and its potential hazards (11–13).

Unenhanced MDCT parameters dedicated for imaging evaluation of urinary stone disease in our institution are: detector collimation, 2 x 2.5 mm, 4 x 2.5 mm, 16 x 1.5 mm, 64 x 0.7 mm; slice thickness, 3 mm;
pitch, 1.5; mAs, 80; kVp, 130. Scanning is almost always performed in supine position and images are obtained from the top of the kidneys through the base of the urinary bladder in a single breath hold (Fig. 1). Images at prone or left/right decubitus positions can be obtained if needed (Fig. 2). In cases where a stone is identified in the ureterovesical junction prone imaging can be added to the protocol, this technique lets the stone to float freely within the bladder if it is not located at the ureterovesical junction (Fig. 3); additionally, differentiation of a urinary bladder mass from a clot can be made via this approach.

In addition to axial images obtained by unenhanced MDCT, it is possible to obtain more detailed coronal, sagittal multiplanar reconstructions (MPR), and 3D reconstruction images (Fig. 4). In this manner, obtaining additional scans and radiation exposure are avoided. Moreover, by intravenous contrast material administration, intravenous pyelogram (IVP) like images can be reconstructed (8).

Radiation dose optimization and dose reduction: ALARA (as low as reasonably achievable)

Radiation dose optimization is a growing concern among radiologists, particularly in children and young adults. Patients with urinary stone disease may experience repeated stone formations and therefore they may undergo multiple CT examinations during their life span. The radiation dose of CT has to be optimized in order to prevent undesired effects of radiation in this group of patients.

Ways of reducing radiation exposure can be grouped under three main topics, namely re-adjustment of CT scanning parameters, modulation of CT scanning parameters, and technologic advances for radiation dose reduction.

Firstly, readjustment of CT scanning parameters such as current and voltage, table speed, pitch and shielding should be discussed. The reduction in tube current is the most practical means of reducing the radiation dose. In previous studies, authors suggested that it is possible to reduce tube current without markedly affecting image quality.
A study has shown that in patients with suspected renal colic who weighed less than 90 kg unenhanced helical CT performed at a reduced tube current demonstrated a higher accuracy when compared with that of the standard technique (19). As for pitch, an increase in pitch decreases duration of examination and also decreases radiation exposure to the body. Although increase of pitch causes helical artifacts and decreased spatial resolution, some investigators have reported using a pitch of 2 or above with satisfactory results in cases of suspected renal colic (20, 21).

Secondly, as a modulation of scanning parameters, tube current modulation according to patient weight and cross-sectional abdominal dimensions is a common way of reducing radiation exposure. Recent studies have revealed that in children and adults tube current can be reduced on the basis of patient weight with acceptable image quality (22, 23).

Lastly, technologic advances for radiation reduction which include X-ray filtration and automatic modulation...
Automatic tube current modulation can be defined as a set of techniques that enable automatic adjustment of the tube current according to the size and attenuation characteristics of the body part being scanned and achieve constant CT image quality with lower radiation exposure (25). There are two methods used on CT scanners today: z-axis modulation and x-y axis (angular) modulation. The angular modulation technique modulates tube current on the basis of measured density of regional structures and absorption values of the interested organ. CARE Dose (Siemens Medical Systems, Erlangen, Germany) is the technique used on multi-detector row scanner for angular tube current modulation. Studies have shown that X-rays are much less attenuated in the anteroposterior direction than in the lateral direction (26–29). By using angular modulation technique, we can reduce anteroposterior X-rays without a marked effect on overall image noise by adjusting the tube current for each projection angle. Recent investigations in children, in whom angular modulation was used, showed 40–60% reduction in dose without loss of image quality (30). The z-axis modulation adjusts the tube current automatically to maintain a user-specified noise level in the image data. Z-axis modulation attempts to equalize noise in all slices independent of the patient’s size and anatomy. Auto mA (GE Healthcare, Milwaukee, Wisconsin, USA) is the technique used for z-axis modulation. A study showed that kidney stones smaller than 5 mm can be adequately evaluated by using “auto mA” modulation technique with a 56–75% reduction in radiation dose relative to the dose from a fixed-tube-current technique (31).

CT radiation dose optimization is a crucial issue especially for children and patients who have to undergo multiple CT examinations. As a result, it can be said that both the radiologists and manufacturers should focus on the strategies for limiting patient radiation dose and improve CT technology to provide necessary diagnostic image quality with reduced radiation dose.

Unenhanced MDCT findings of urinary stone disease

Primary findings

Without regarding the composition, renal stones can be readily detected on unenhanced MDCT images, since their attenuation is higher than any surrounding tissue. The attenuation of stones ranges between 200 to 1,700 HU on CT images (Fig. 5) (32). The dimension of the stone carries importance since it has a role in determination of the management method. Apart from moderate to big sized and staghorn stones, small ones which are often missed on direct radiographs can also be visualized within minor calyces or medullary pyramids.

The basic CT finding of acute ureteral obstruction secondary to urinary stone disease is the direct visualization of a stone within the ureter lumen. The diagnosis is confirmed if the ureter is found to be dilated above the level of a stone. Sometimes the diagnosis is challenging if patient has inadequate peritoneal fat tissue and has phleboliths along the course of ureters. Additionally, small size and low attenuation of the urinary stone, and respiratory artifacts may lead to confusion (33, 34). A stone within the ureter is identified by following the ureter inferior and superior to an area of calcification; beside this, secondary findings are common and include hydronephrosis, hydroureter, perinephric edema, enlargement of the kidney on the affected side and edema of the ureterovesical junction (Figs. 6, 7). Contralateral side may serve as a control helping to distinguish acute findings from normal findings (35).

Similar to renal stones, urinary bladder stones can also be detected on unenhanced MDCT images; however, ideally the urinary bladder should be full during the MDCT examination, thereby the overlying small bowel will be lifted and the ureterovesical junctions will be clearly identified. If the bladder remains empty during the examination, stones of the ureterovesical junction can be easily missed and sometimes large pelvic cysts may mimic a full bladder (Fig. 8) (36).

Secondary findings

Direct stone identification is diagnostic for lithiasis, but a stone may not
be easily identified due to its small size, low attenuation, respiratory movement artifacts, inadequacy of retroperitoneal fat tissue, phleboliths, and recent stone passage; under these circumstances, the presence of secondary signs carries great importance for prediction of the duration of stone disease and its management (37, 38). The secondary signs include asymmetric perinephric fat stranding, dilatation of the intrarenal collecting system, hydroura, tissue rim sign, unilateral renal enlargement and pale kidney, and unilateral absence of white renal pyramids.

Asymmetric unilateral perinephric fat stranding

The changes in the perinephric space in the presence of urinary stone are thought to result from adaptation of the kidney to obstruction. Immediately after acute ureteral obstruction the intraluminal pressure of the collecting system increases and reaches to 3–5 times (39). Smooth muscle fibers of the urinary tract contract as a response to this pressure increment; this results in increase of tension. Additionally, the amplitude of peristalsis increases; in case of persistent obstruction, smooth muscles of the urinary tract contract less forcefully, wall tension diminishes, peristalsis decreases. The escape of urine into the renal interstitium (pyelotubular backflow), across the renal pelvis into the renal sinus (pyelosinus backflow) or into the lymphatic system (pyelolymphatic backflow) or the renal venous system (pyelovenous backflow) may contribute to perinephric stranding (Fig. 6) (40, 41).

Elevated pressure in the collecting system is considered to be the most important force that causes a stone to move down the ureter; this occurs during acute phase of the obstruction. This is probably why an increased degree of perinephric fat stranding and the presence of perinephric fluid collection are associated with an increased rate of spontaneous stone passage. Hydronephrosis reflects a subacute to chronic phase obstruction; moreover, a longer duration of passage and hydroureter indicates decrement of frequency of peristalsis and lowered probability of spontaneous stone passage (Fig. 9). A smaller stone size and a higher degree of perinephric fat stranding or an increased amount of perinephric stranding and fluid are associated with a higher likelihood of

Figure 7. a, b. Axial contrast enhanced CT images of a 45-year-old male show a left ureterovesical junction stone (arrow, a) and secondary edema (arrowhead, b).

Figure 8. a, b. Axial unenhanced CT image (a) of a 26-year-old female with an empty urinary bladder shows an ovarian torsion (asterisk) with a calcification on the right side, mimicking a right ureterovesical junction stone (arrow). Contrast enhanced CT image (b) confirms the diagnosis of ovarian torsion (asterisk).
spontaneous stone passage (Fig. 10) (40, 41).

Dilatation of the intrarenal collecting system

Evaluation of the renal collecting system is important for determination of the obstruction and it should focus on the renal sinus in the upper and lower poles since differentiation from extrarenal pelvis may be challenging. There is less variation in the intrarenal portion of the renal collecting system; that is why collecting system is best identified in upper and lower poles. Dilated calyces appear as round fluid-filled structures that obliterate the renal sinus fat (Fig. 11).

Hydroureter

Ureteral dilatation is generally readily detected unless phleboliths are present and intraabdominal fat tissue is inadequate. Once the presence of hydroureter is established, ureter should be followed throughout its course. Evaluation should be made for the presence of calculi, mass and/or other extrinsic causes leading to obstruction. Identification of ureter is often diffi-

Figure 9. a–c. Axial unenhanced CT image (a) shows a stone located at the lower third of the left ureter (arrow). Coronal reconstructed CT image (b) shows significant left hydroureteronephrosis (arrowhead) without perinephric and periureteral edema. Axial CT image of the left kidney (c) shows chronic changes in the kidney. All findings are consistent with the chronic phase of obstruction.

Figure 10. a, b. Axial unenhanced CT image (a) of a 47-year-old male shows a right ureterovesical junction stone (arrow). Coronal reconstructed CT image (b) shows mild-to-moderate hydroureteronephrosis and minimal perinephric edema. All findings are consistent with a higher likelihood of spontaneous stone passage.
cult; viewing on a workstation in cine mode is often useful especially in challenging cases (Figs. 10, 11).

Tissue rim sign
The rim sign is a circumferential halo of soft tissue attenuation around an abdominal or pelvic calcification; this sign indicates that the calcification is ureteral (42, 43). This finding usually helps distinction of stone obstruction from phleboliths (Fig. 12).
Recently, unilateral absence of white renal pyramids is described as an indicator of urinary tract obstruction. Ureteral obstruction may lead to tubular hydronephrosis which may result in a relative decrease in attenuation of the renal pyramids on the affected side compared with the unaffected side which remains normal (Fig. 13) (44, 45).

Unilateral renal enlargement and pale kidney

Kidney size is usually measured larger on the affected side when compared with the contralateral side; this is a result of the dilatation of the renal collecting system and edema. Kidney edema indicates the organ’s response to the obstruction and it can be defined as a density difference between the two kidneys on unenhanced CT scans which is more than 5 HU, this sign can be useful in case of difficulty during differentiation of a ureteral calculus from a phlebolith (7) (Figs. 14, 15).

Pitfalls

There are many pitfalls that may occur in the identification of urinary stone disease on unenhanced MDCT images; most are related to calcifications that simulate calculi. Calcifications of the iliac vessels may be difficult to differentiate from an adjacent ureter stone; by re-evaluating the images in cine mode at a workstation, ureterolithiasis can be differentiated from such calcifications. Rarely, in selected cases intravenous contrast material administration may also be helpful for differentiation.

Presence of phleboliths is a major problem for lower ureteral and ureterovesical junction stones since they are common in this area; again by using the workstation for cine mode re-evaluation differentiation can be made. Moreover, the rim and comet tail signs are described for evaluation of pelvic calcifications in case of confusion on their relationship with the ureter (43, 45, 46). The rim sign is a thin circumferential layer of soft tissue attenuation around an abdominal or pelvic calcification, this attenuation indicates that the calcification represents ureteral edema with a stone. On
the other hand, the comet tail sign is a linear soft tissue attenuation extending from an abdominal or pelvic calcification indicating that the calcification is a phlebolith (Figs. 16, 17) (35, 46). If all of these strategies are useless, intravenous contrast material injection can be done for differentiation.

Besides calcifications, some other conditions may interfere with the establishment of the exact diagnosis by mimicking hydronephrosis. These include parapelvic renal cysts, extrarenal pelvis, vesicoureteral reflux disease, and transitional cell tumors. Large pelvic cysts may mimic a full bladder in case of an empty bladder during unenhanced MDCT examination (Fig. 8).

A potential and often underestimated pitfall is the incomplete area scanned during the examination. Images should be acquired from the top of the kidneys to the lower border of the pubic symphysis. Occasionally stones may be present in the inferior part of the bladder or within a urethral diverticulum in women. These stones can be missed due to incomplete coverage (36).

Can stone composition be estimated?

Stone composition affects the efficacy of extracorporeal shock wave lithotripsy (ESWL) (47). Stones composed of calcium oxalate and cystine typically do not respond well to ESWL. Identification of such stones by MDCT via attenuation measurement may prevent unnecessary ESWL attempts and divert treatment to endoscopic approach. Nakada et al. proposed advantage of attenuation/size ratio of stone in depicting composition of urinary stones (48). They measured HU attenuation level for each pixel representing the stone, and took the highest measured value, then divided the value by the size of the stone. As a result, they found out that if a stone had an attenuation/size ratio of lower than 80, it could be a uric acid stone; if the ratio was found to be greater than 80, this indicated a non-uric acid stone (48). Deveci et al. concluded in an in vitro study that chemical compositions of both pure and mixed stones can be determined by using multi-slice CT (49).

Alternative diagnoses

Almost 50% of patients with acute flank pain have no urinary stone on CT examinations; among them an alternative cause of flank pain is identified in nearly one third of cases (36). Some of the alternative diagnoses are congenital renal anomalies, infections (appendicitis, diverticulitis, pancreatitis, mesenteric lymphadenitis, cholecystitis, colitis, pyelonephritis), aortic aneurysm and dissection, ovarian cysts and neoplasms (renal, uterine and adnexal masses) (Figs. 18, 19) (11, 50, 51).

When should the intravenous contrast be given?

Intravenous contrast is not routinely given for CT imaging of renal colic, but reaching a correct diagnosis and characterization of tumoral and cystic lesions can be challenging in patients with equivocal unenhanced CT findings. Indications for contrast-enhanced CT evaluation (based on unenhanced CT findings) are: i) presence of unilateral perinephric stranding without hydroureteronephrosis with or without renal enlargement (acute renal infarction, renal vein thrombosis, acute pyelonephritis); ii) significant hypo-/ hyperdense perirenal collection (urinoma, hematoma) with or without the
presence of hydroureteronephrosis; iii) presence of a mass or complicated cyst with/without calculus; iv) negative unenhanced CT findings in a patient with unexplained hematuria (52). Common clinical conditions requiring contrast-enhanced CT after unenhanced CT scan in a patient presenting with flank pain and hematuria are infections, neoplasms, renal cyst complications, vascular lesions, urinoma and acute perirenal hematoma, of which imaging findings are already defined elsewhere (51–55).

Conclusion

Unenhanced CT is a widely used imaging modality for the evaluation of urinary stone disease. Primary imaging findings, secondary signs and potential pitfalls of unenhanced CT findings carry considerable importance in terms of accurate diagnosis and decision-making for treatment selection. Additionally, awareness of radiation exposure reduction strategies, patient protection and correct intravenous contrast material administration judgment will both yield a safer and more beneficial road to diagnosis.

References