A lthough classical textbooks state that hamartomas are rare tumors, radiologists who use both mammography and ultrasonography (US) frequently encounter hamartomas in their daily practices. These tumors present as painless and mobile masses with well-defined borders. They are composed of variable amounts of glandular tissue, fat and fibrous elements that produce a mass of disorganized but mature specialized cells (1–3). The complete resemblance of the tissues to normal breast parenchyma and an occasional admixture of other elements limit the contribution of the pathological examination to the diagnosis. The correlation between clinical and radiological findings is of paramount importance (4, 5). Although mammographic and US findings of breast hamartomas have been well defined, advanced magnetic resonance imaging (MRI) findings in such cases have not been previously described. This study provides a description of dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) findings in breast hamartomas.

Materials and methods
The study was executed retrospectively based on the records of our breast imaging center over a 24-month period. During that time, all examinations were performed by the same radiologist (G.E.), who is a specialist in breast imaging. Eight patients with breast hamartomas were examined using MRI techniques in addition to ultrasonographic and/or mammographic findings.

RESULTS
Each of the lesions examined showed a gradual enhancement pattern in its time-signal intensity curve on dynamic contrast-enhanced MRI. On MR spectroscopy, water and lipid peaks were detected that resembled normal breast tissue. The diffusion features of the lesions were variable due to the different ratios of the tissue elements constituting them on diffusion-weighted imaging (DWI).

CONCLUSION
Advanced MRI findings may clarify diagnoses by providing additional information following sonography, especially in lactating or pregnant women, in whom mammographic examination is not preferred.

Key words: • breast • hamartoma • magnetic resonance imaging • diffusion magnetic resonance imaging • magnetic resonance spectroscopy
ly show time-dependent enhancement in these ROIs.

For DWI, a single-shot gradient-echo echo-planar imaging (EPI) sequence (TR/TE, 4393/81 ms; slice thickness, 5 mm; interslice gap, 1 mm; FOV, 350 mm; matrix, 128x256) was used. Diffusion gradients were simultaneously applied to the x, y and z axes. “b” values of 0 and 1000 s/mm² were used to construct automated apparent diffusion coefficient (ADC) maps using commercially available software. Directionally averaged ADC values were measured on ADC maps to quantify the diffusional properties of the masses. Measurements were performed using circular ROIs drawn onto the regions identified on the T2-weighted (b=0 s/mm²) images. These ROIs were 150 to 850 mm² in area, depending on the size of the mass. The sizes of the control ROIs were determined such that they matched the size of the relevant mass. All measurements were performed three times, and the averages of these measurements were calculated and used for the final analysis.

The Statistical Package for Social Sciences version 13.0 (SPSS Inc., Chicago, USA) was used for the statistical analysis. Results were given as means±standard deviations (SD). Mann-Whitney U test was utilized for comparison of the ADC values between the lesions and normal breast tissues.

MRS of each mass was performed by the point-resolved spectroscopy technique with a short (31 ms) and long (136 ms) TE. The ROI for MRS measurement was placed at the center of the mass to avoid a contamination signal from normal tissues. The spectra were generated and corrected with the scanner’s own software.

Results

The mean age of presentation or incidental discovery was 38.6 years in our patients. Two out of three patients who were under that mean age (22 and 26 years) were lactating. Although these patients had noticed some breast lumps since pubertal ages, these masses had undergone a considerable change in size after they gave birth. These patients were initially investigated with US in non-specialized medical institutions upon self-palpation of painless masses. Although the US features of these masses resembled fibroadenomas, they were slightly heterogene-

ous. Therefore, the two patients were referred to our institution for detailed work-ups. Taking their age group into account, their conventional mammographic examinations were limited to a single position.

Two patients presented with premenstrual pain. One of these patients and the remainder of the study group were discovered during routine mammographic screenings. Three of these patients were postmenopausal.

All lesions were solitary, with maximum diameters between 2.5 and 10.0 cm (mean, 5.3 cm; SD 2.6 cm). All of the patients were investigated with mammography except for one young patient who had dense pattern on US. Six of these had mammographically detectable lesions that were ovoid in shape and had well-defined, thin capsules with heterogeneous parenchymal patterns. The presence of widely dispersed fat densities was their main radiological hallmark (Fig. 1). US examination of these patients revealed oval masses with well-defined contours, the echogenic features of which were similar to fibroadenomas. However, compared to fibroadenomas, the echogenicity of the masses was slightly higher and heterogeneous, and their posterior acoustic enhancement was either nonexistent or less prominent (Fig. 2).

On conventional T1- and T2-weighted MRI, these lesions had heterogeneous intensities that represented their fatty and fibroglandular content, as well as a thin capsule (Fig. 3). On DCE-MRI the lesions enhanced gradually. This enhancement was classified as a type 1 pattern (Fig. 4). On DWI, a distinct signal pattern was not present. The mean ADC value of the lesions was 1147±383x10⁻⁶ mm²/s, whereas the value of the normal breast parenchyma was 986±352x10⁻⁶ mm²/s.

The difference in ADC values between hamartomas and normal breast parenchyma was not significant (Mann-Whitney U test, P = 0.345). The ADCs of hamartomas and normal parenchyma are given in Table.

On MRS, short (31 ms) and long (136 ms) TE spectra exhibited lipid peaks. These peaks are indicative of benign lesions. Choline peak, a malignancy marker that represents cell membrane turnover, was not present (Fig. 5).

Five of these patients were investigated with fine needle aspiration cytology by the request of their clinicians. The pathological evaluations of these specimens were reported as purely benign without any atypical cells.

Discussion

Breast hamartomas are benign lesions that appear with a frequency of 0.1–0.7% within all benign mammary masses (4). These lesions are also called fibroadenolipomas, lipofibroadenomas and adenolipomas. As these
Advanced MRI findings in breast hamartomas

Names imply, the lesions contain various amounts of fat, glandular components and fibrous tissue. These tissues are completely differentiated, but they form an abnormal organization (1–3).

Breast hamartomas constitute painless, well-defined and mobile masses. They typically present in middle-aged women during the 4th–5th decades of life (1, 3). During these ages, breast tissue involutes as a consequence of post-lactation or menopause. Lesions, therefore, become more apparent, leading to asymmetric enlargement (6). Estrogen and progesterone receptor positivity in such lesions were shown to be similar to normal breast tissue in immunohistochemical studies. Ki67 together with receptor positivity may reflect some proliferative activity and explain the observed faster growth of hamartomas during pregnancy and lactation (7). These tumors are frequently unilateral (8) and may develop in ectopic breast tissue in the inguinal or axillary regions (9, 10).

The mammographic appearance of a hamartoma is fairly characteristic; it is referred to as a “breast-in-breast” lesion and is observed as a well-defined mass.

Figure 2. a, b. Ultrasonographic appearances of two different hamartoma cases. Isoechoic oval masses with hypoechoic areas representing fat tissues are seen without posterior acoustic enhancement in a 22-year-old woman (a) and a 47-year-old woman (b) who both presented with premenstrual pain.

Figure 3. a–c. Axial (a) and sagittal (b) T2-weighted MR images. A heterogeneous hyperintense mass with well-defined margins and a smooth hypointense rim at the lower region of the right breast was found in a 22-year-old lactating woman. On sagittal post-contrast T1-weighted fat-suppressed MR image (c), the mass containing fat intensities enhances heterogeneously.

Figure 4. The time-signal intensity curve obtained from dynamic contrast enhanced MRI demonstrates the presence of a gradual enhancement pattern in favor of a benign lesion.
The shape of the mass is round to oval, and it has a mixed density composed of a mixture of fatty and fibroglandular tissues. The mass is surrounded by a thin radiopaque pseudocapsule, and the degree of opacity depends on the constituents of the hamartomatous tissue (1–4). The lobulated densities scattered within the encapsulated fat are called “slices of salami”. These densities may be accompanied by benign amorphous or round microcalcifications. The mass may replace the subcutaneous fatty tissue without altering the skin (2).

The above-mentioned mammographic findings may be adequate for diagnosing hamartomas, bypassing the need for advanced examinations such as US or biopsy (2). However, these mammographic findings are present in relatively bigger lesions, and is seen in 10–60% of hamartomas (1). On US, a lesion with a heterogeneous internal echo pattern that is composed of echogenic fibrous and hypoechoic components is observed (4). This lesion may also be isoechoic and contain cystic areas. The role of ultrasonography in diagnosis is limited due to the variety of possible US appearances (1, 3). MRI of hamartomas reveals internal fat intensities in addition to heterogeneous contrast enhancement and reveals a smooth, thin hypointense rim (4). While heterogeneous masses containing radiolucent areas with thin, opaque capsules were seen in six of our patients using mammography, the lesion could not be discriminated due to the underlying density of the breast tissue in one case. All hamartomas were observed as well-defined, heterogeneously intense lesions.

The presence of lobules and ducts differentiates hamartomas from fibroadenomas (11). However, hamartomas do not have specific diagnostic

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Complaint</th>
<th>Size (cm)</th>
<th>Mean ADC values of hamartomas (mm²/s x 10⁻⁶)</th>
<th>Mean ADC values of normal breast parenchyma (mm²/s x 10⁻⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Palpable mass during lactation</td>
<td>10</td>
<td>1120</td>
<td>826</td>
</tr>
<tr>
<td>26</td>
<td>Palpable mass during lactation</td>
<td>4</td>
<td>1396</td>
<td>1387</td>
</tr>
<tr>
<td>22</td>
<td>Premenstrual pain</td>
<td>2.5</td>
<td>1071</td>
<td>1407</td>
</tr>
<tr>
<td>47</td>
<td>Premenstrual pain</td>
<td>7</td>
<td>1724</td>
<td>1188</td>
</tr>
<tr>
<td>46</td>
<td>Screening</td>
<td>4</td>
<td>1001</td>
<td>690</td>
</tr>
<tr>
<td>53</td>
<td>Screening</td>
<td>3.5</td>
<td>1176</td>
<td>1056</td>
</tr>
<tr>
<td>54</td>
<td>Screening</td>
<td>3.7</td>
<td>1301</td>
<td>959</td>
</tr>
<tr>
<td>54</td>
<td>Screening</td>
<td>8</td>
<td>386</td>
<td>378</td>
</tr>
</tbody>
</table>

Figure 5. MR spectroscopic analysis. Elevated lipid signals at 1.1 ppm and water signals at 4.5 ppm were observed on short TE (31 ms).
histological findings (4, 5). Fine needle aspiration biopsy and core biopsy have limited roles in the diagnosis of hamartomas; therefore, the diagnosis of hamartomas may be fairly difficult. The clinical and radiological findings are important. Although they are benign, there is always a possibility of recurrence. Moreover, these lesions may coexist with in situ or invasive carcinomas (4, 12, 13). The malignancy itself may arise from glandular parts of hamartomatous tissues (13). Given the above-mentioned situations, conventional and functional MRI are clear complements to mammographic and ultrasonographic studies. These advanced methods also constitute the most appropriate imaging modalities in pregnant and lactating women.

Although the diagnosis of breast lesions essentially depends on mammographic and US findings, MRI features have increasingly been reported. These reports are focused on enhancement patterns and biochemical features that would allow the differentiation between benign and malignant lesions. DCE-MRI gives information on the vascularization of tissues. Peak enhancement in the early phases and rapid washout demonstrate increased vascularization and are malignancy criteria (14). In all of our cases, lesions showed gradual enhancement patterns in their time-intensity curves, indicative of benign lesions.

MRS is one of the most advanced functional imaging modalities. It provides information about the biochemical structure and metabolism of tissues. The level of different chemical metabolites may be measured by this method. The presence of choline peaks is a diagnostic metabolic marker in malignant breast tumors. Choline is observed at 3.24 ppm in the spectrum and is not seen in benign lesions (15). In MRS, we detected marked water and lipid peaks; however, choline peaks were not detected. These results are similar to the signals seen in normal breast tissue.

DWI allows quantitative measurement of the water molecules in lesions and normal tissues, and ADC mapping shows the absolute value of diffusion. The mean ADC value of lesions in this study (1147±383x10^-6 mm^2/s) was similar to that of normal breast parenchyma (986±352x10^-6 mm^2/s). There was no significant difference between the groups. We considered that different values among the cases may have resulted from the different ratios of the tissue elements constituting the lesions. The ADC value may be higher in lesions where fat and glandular elements are dominant, whereas the value may be lower in lesions where fibrous elements are dominant (16).

In conclusion, breast hamartomas are rare breast masses, and in order to reach the correct diagnosis in these cases, a correlation between the clinical and radiological findings is required due to the inadequacy of pathological examinations alone. The diagnosis of breast lesions depends on mammographic and US findings. However, especially in lactating or pregnant women, in whom mammographic examinations are not preferred, the conventional and advanced MRI findings could clarify the diagnosis by providing additional information following US.

References