Multidetector computed tomography angiography (MDCTA) plays an increasingly important role in the evaluation of the renal vasculature (1). Although conventional angiography is still regarded as the gold standard in renal vascular imaging, MDCTA is increasingly used as it is less invasive, easily applicable and available (2–4). MDCTA enables precise visualization of the normal and variant anatomy of several regions including the renal vasculature (5–7); however, the main drawbacks of MDCTA are the exposure to ionizing radiation and the use of potentially nephrotoxic iodinated contrast material. As such, its use is limited in children and pregnant women and in patients with impaired renal function.

Main clinical indications for renal MDCTA include the imaging work-up for ruling out renovascular hypertension, renal transplant recipient and donor evaluation, acute onset flank pain in patients with coagulative disorders, direct renal trauma, arteriovenous communications, renal artery aneurysm, renal parenchymal or vascular calcifications, renal manifestations of a systemic disease (e.g., vasculitis, thromboembolic disease) (8).

Technical considerations

Image acquisition

Diagnostic accuracy of renal MDCTA depends on the quality of initial raw data acquired during the study. Adequate patient preparation, positioning, as well as the proper contrast material injection, are of paramount importance. CT protocol for the evaluation of the renal vasculature consists of both unenhanced and enhanced CT scans. Unenhanced scans of the kidneys and adrenal glands with contiguous sections of 3-mm thickness are necessary for the evaluation of adrenal lesions, vascular calcifications, and renal calculi (Fig. 1).

The optimal anatomic coverage for the arterial phase scan, that is the principal part of the renal MDCT angiography, should include the region between the celiac artery and terminal part of the common iliac arteries (Fig. 2). However, in patients with ectopic or transplanted kidney, the coverage can be modified; for this purpose careful preprocedural evaluation of the patient including medical records should be done. Slices with a thickness of 1–1.5 mm are obtained after rapid injection of a 100-ml bolus of 300–400 mg/ml non-ionic iodinated contrast at a rate of 4 ml/s and a 70-ml bolus at a rate of 5–6 ml/s in 16 and 64-channel MDCT scanners, respectively. The scanning parameters are summarized in Table. Image acquisition is initiated after a 4–5 s and 6–7 s delay in 16 and 64-channel MDCT scanners, respectively, when the threshold enhancement of 100 HU is reached within the region of interest placed on the abdominal aorta. For the evaluation of renal venous structures and abdominal viscera whole abdomen is scanned with a section thickness
Ultimately, in renal transplant donors, 7–10 min delayed scans are obtained for the evaluation of the ureters.

Postprocessing techniques

Axial source images remain the basis for diagnosis; however, postprocessed 2D and 3D reformations contribute significantly for accurate evaluation. Most commonly used post-processing techniques are multiplanar and curved planar reformations (MPR and CPR), maximum intensity projection (MIP), and volume rendering (VR).

MIP images provide angiography-like images with an excellent overview of vascular anatomy and their variable projection angles should be used for the accurate interpretation of stenotic lesions. MPR and CPR images are particularly useful for correct evaluation of the arterial luminal diameter for accurate depiction and quantification of the arterial stenosis. VR images can be used for the overall display of the abdominal vasculature and can provide an insight for the interpreter and referring physicians (5, 9). Finally, the axial source images should always be reviewed for possible presence of an accompanying non-vascular pathology.

Normal renal vascular anatomy

In the majority of the human subjects, each kidney is supplied by one renal artery arising from the abdominal aorta, but in approximately 30% of individuals more than one artery can be present (10). Renal arteries are usually 4–6 cm in length and 5–6 mm in diameter. They typically arise from the aorta at the level of L1–L2 intervertebral disk space below the origin of the superior mesenteric artery (SMA), and tend to course through the anterior portion of the renal pelvis.

The right renal artery characteristically courses downwards toward the right kidney behind the inferior vena cava (IVC), while the left has a more horizontal, upward orientation posterior to the left renal vein (Fig. 3). Each renal artery supplies the inferior adrenal artery. The inferior adrenal arteries arise directly from the aorta.
from the proximal renal artery in two-thirds of people and they may be solitary or multiple (11). The main renal artery then continues before dividing into four anterior branches at the renal hilum: the apical, upper, middle, and lower anterior segmental arteries (Fig. 4). The segmental arteries then course through the renal sinus and branch into the lobar arteries giving one branch to each pyramid. Further divisions include the interlobar, arcuate, and interlobular arteries.

Renal veins course anterior to the renal arteries. The renal cortex is drained sequentially by the interlobular, arcuate, interlobar, and lobar veins, and then they converge to form the main renal vein. The left renal vein normally courses between the SMA (thin arrow) and the aorta (small asterisk) before draining into the medial aspect of the IVC (big asterisk), while the right vein drains to the lateral aspect of the IVC (Fig. 5) (12).
Sensitivity of CT angiography in demonstration of the course of main renal arteries and veins is around 100%. Accurate depiction of the renal vessels is of paramount importance for potential kidney donors, especially on the left, as it is often the preferred side for renal harvesting (13).

Renal vascular variations

Renal artery variations

Anatomic variations of the renal arteries are common in general population with different frequencies among several ethnic and racial groups (14). These variations are becoming more important considering the gradual increase in the number of interventional radiological procedures, as well as urological-vascular operations and transplantations (15).

Accessory renal arteries constitute the most common and clinically important renal arterial variations and can be seen in up to one-third of the normal population. Accessory arteries usually arise from the aorta or iliac arteries at any level between T11 and L4. Typically, the accessory renal artery courses into the renal hilum to perfuse the upper or lower renal poles. They may also enter the renal parenchyma directly from the renal cortex, whereupon it may also be termed the polar artery (Fig. 6). Rarely, they may originate from the lower thoracic aorta (Fig. 7), as well as from the lumbar and mesenteric arteries (16). VR, MIP and MPR images may accurately demonstrate accessory arteries. Rubin et al. showed 3D CT angiography to be 100% sensitive in the visualization of accessory renal arteries (17, 18).

Prehilar branching is another common variant that can be readily detected with 3D imaging. This variant is particularly important for the preoperative mapping of the renal donors. Theoretically, it is the branching of the main renal arteries into segmental branches at a more proximal level than the renal hilum (Fig. 8) (18).

Rarely, renal arteries may originate from the more proximal portion of the abdominal aorta above the origin of the SMA. Aberrant renal arteries may even originate from the iliac arteries in rare cases; however, they can be more common in ectopic kidneys (Fig. 9).

In the case of horse-shoe kidney, the main renal arteries develop normally;
however, the mesenephric and me-
tanephric arteries often persist to sup-
ply the upper and lower poles, respec-
tively. These primitive arteries may
arise at different levels in the aorta and
iliac arteries (19).

Renal vein variations
The most common venous variant
is the presence of supernumerary renal
veins which can be seen in approxi-
mately 15–30% of individuals (16),
and occasionally the accessory renal
vein that can drain into the iliac vein
(Fig. 10).

Circumaortic renal vein is another
variant in which the left renal vein bi-
furcates into ventral and dorsal limbs
enclosing the abdominal aorta (20).
The retroaortic portion is located in a more caudal position with respect to the preaortic one. It has a 2.4–8.7% prevalence and is particularly important in kidney transplant donors (Fig. 11) (21).

Retroaortic renal vein is a less common venous anomaly which can be detected in 3% of individuals. In this variant, the left renal vein courses posterior to the aorta and drains into the lower lumbar portion of the inferior vena cava (Fig. 12) (20).

Variations of the renal veins and IVC occur infrequently but if they remain unidentified in potential surgery candidates, that may increase surgical morbidity during operations, therefore it is necessary to evaluate renal veins and azygocaval anatomy correctly (22). Knowing the above-mentioned renal venous variations also carries importance when placement of an inferior vena cava filter is considered.

Conclusion

Conventional angiography is traditionally regarded as the gold standard imaging modality for evaluation of the renal vasculature. However, MDCTA enables less invasive, accurate, prompt and effective visualization of the renal vessels. MDCTA, together with reformatting techniques, can provide valuable information about not only intraluminal pathologies but also the anatomical variations including the number, size, course, and anatomy of the renal vasculature.

References