Clinical situations in which coronary CT angiography confers superior diagnostic information compared with coronary angiography

Mecit Kantarci, Selim Doğanay, Muşturay Karçaaltincaba, Nevzat Karabulut, Mustafa Kemal Erol, Ahmet Yalçın, Cihan Duran, Memduh Dursun, Afaŧ Karakaya, Servet Tatlı

ABSTRACT
In this review, we aimed to outline the clinical and pathologic conditions for which multidetector computed tomography coronary angiography (MDCT-CA) should be the preferred method because of its advantages over conventional coronary angiography (CCA). A consistent body of literature suggests that MDCT-CA is more than just complementary to CCA and that it provides more valuable diagnostic information in certain clinical situations, such as complex coronary artery variations, aorto-ostial lesions, follow-up of bypass grafts, myocardial bridging, coronary artery fistulas, aortic and coronary artery dissections, and cases in which the coronary ostia cannot be cannulated by a catheter because of massive atherosclerosis or extremely tortuous vascular structures.

Key words: • computed tomography • coronary angiography • coronary arteries

Coronary artery disease is responsible for millions of deaths per year in developed countries (1, 2). Early recognition of coronary artery disease is important for the prevention of its related complications and improving prognosis (3). Catheter angiography has been considered the gold standard imaging method for evaluating the coronary tree. The major advantages of conventional coronary angiography (CCA) are its high spatial and temporal resolutions and the option of directly performing interventions, such as balloon dilation or coronary stent placement (4). However, CCA is an invasive procedure that carries the risk of morbidity and mortality (3). In addition, CCA provides only luminal data and is limited in revealing changes in the vessel wall and the adjacent soft tissues. Conversely, multidetector computed tomography coronary angiography (MDCT-CA) not only provides visualization of the vessel lumen but also displays the vessel wall and surrounding soft tissues, allowing for the detection of various congenital or acquired abnormalities of the coronary arteries that may not be evident with CCA (3).

In this article, on the basis of our experience with more than 15 000 MDCT-CA from seven different centers, we reviewed clinical conditions in which MDCT-CA may be more helpful compared with CCA.

Coronary CT technique
With the advent of technological refinements in the last decade, MDCT-CA has gained widespread use for the evaluation of coronary artery diseases. Currently, state-of-the-art computed tomography (CT) systems can simultaneously acquire 64 or more submillimeter sections with a gantry rotation time of less than half a second. Previous limitations of CT for evaluating the vascular system, associated with older generation scanners, have now been eliminated. Presently, a thinner section thickness allows for isotropic voxels, which is essential for optimum high-resolution, three-dimensional (3D) reconstruction and other post-processing displays, such as maximum projection reformatting (MPR) in any selected plane. Faster scanners have resulted in shorter scans and shorter contrast bolus durations, allowing for the use of less contrast agent at a higher flow rate to achieve greater luminal enhancement. Motion artifacts from breathing are no longer a problem since high-resolution imaging of the entire heart can be obtained in a single breath hold. Electrocardiography (ECG) gating techniques improve temporal resolution and minimize imaging artifacts caused by cardiac motion. With more recent technological advances, a reduction in radiation dose, for example, by the utilization of prospective gating, has occurred without any deterioration in diagnostic image quality (5).

In our centers, images were acquired using either 16- or 64-MDCT scanners. Eighty-five to one hundred milliliters of iodinated contrast medium (Ultravist 370, Schering, Berlin, Germany) was intravenously
Kantarcı et al. 2012

Diagnostic and Interventional Radiology

CCA because of its 3D volume-rendering ability (6). The most striking variations are listed below.

Congenitally corrected transposition of the great arteries

Congenitally corrected transposition of the great arteries (CCTGA) is a rare cardiac anomaly characterized by atrioventricular (AV) and ventriculoarterial (VA) discordance (7, 8). In patients with CCTGA, the atrial situation relationship is normal; the right atrium (RA) is to the right of the left atrium (LA). The RA empties into the ventricle located on the right (morphologically, the left ventricle [LV]) through the mitral valve, and the main pulmonary artery originates from this ventricle. This chamber has papillary muscles and a smooth septal wall. The LA empties into the ventricle located on the left (morphologically, the right ventricle [RV]) through the tricuspid valve, and the aorta arises from this ventricle. This ventricle has prominent trabeculations and a moderator band (Fig. 1a). The aorta is located left of and anterior to the pulmonary artery (Fig. 1b) (7, 9). In patients with CCTGA, the coronary artery anatomy is more complex, and the coronary arteries show a mirror-image distribution. The morphologic right coronary artery (RCA) arises from the left posterior sinus, and the morphologic left main coronary artery (LMCA) arises from the right anterior sinus. The RCA supplies the anterior descending branch and gives rise to a circumflex (Cx) artery. In addition, the LMCA resembles an RCA (7).

MDCT-CA is able to demonstrate the morphology of the heart (ventricles, interventricular septum, and walls of the heart) and coronary arteries as well as the location of the large vessels originating from the heart by using 3D volume rendering and MIP images obtained in three planes (7).

Agenesis of the LMCA

The LMCA is absent in 0.41% of cases (6). In this condition, the left anterior descending artery (LADA) and Cx artery arise separately or with a common ostium. This anomaly is common and accounts for 30.4% of all coronary anomalies (6, 10). If the LMCA is absent, one of the following results may occur: a) the LADA and left Cx arteries, both of normal length and course, may arise from the left sinus of Valsalva separately or with a common ostium (Fig. 2) (11, 12); b) the left Cx artery may arise from the right sinus of Valsalva or the RCA and follow a course posterior to the aorta (13–15); c) the LADA may arise from the right sinus of Valsalva or the RCA (14–16).

Clinical situations in which MDCT-CA provides superior diagnostic information compared with CCA

By simultaneously displaying the heart, great vessels, and coronary arteries, MDCT-CA readily evaluates complex coronary artery variations, aortostial lesions, bypass grafts, myocardial bridging, coronary artery fistulas, and aortic and coronary artery dissections. This approach is also superior to CCA for cases in which the coronary ostia cannot be cannulated by a catheter because of massive atherosclerosis or extremely tortuous vascular structures.

Complex coronary artery variations

MDCT-CA is more successful in imaging coronary artery variations than CCA because of its 3D volume-rendering ability (6). The most striking variations are listed below.

Figure 1. a, b. A congenitally corrected transposition of the great arteries in a 56-year-old man. The axial MIP image (a) shows that the right atrium (RA) connects to the morphologic left ventricle (MLV) located on the right. Note the characteristic moderator band (MB, arrow) within the morphologic right ventricle (MRV) on the left. An anterior view of a 3D volume-rendered image (b), at the level of the origin of the great arteries, shows the topographic relationship of the vessels. The ascending aorta (Ao) is anterior to and left of the main pulmonary artery (MPA) (b). LA, left atrium; LMCA, left main coronary artery; RCA, right coronary artery.
Coronary CT angiography confers superior diagnostic information compared with coronary angiography

Volume 18 • Issue 3

Figure 2. Agenesis of the left main coronary artery (LMCA) in a 64-year-old woman. An anterosuperior view of a 3D volume-rendered image shows the left anterior descending artery (LADA) and circumflex (Cx) artery arising separately from the left sinus of Valsalva. Ao, aorta.

Figure 3. The left main coronary artery (LMCA), originating from the right sinus of Valsalva in a 37-year-old man. A volume-rendered display from a superior view demonstrates that the LMCA originates from the right sinus of Valsalva, and there is no coronary artery arising from the left sinus of Valsalva. Ao, aorta; RCA, right coronary artery.

and follow either a septal course or an anterior free wall course; or d) the LADA may arise from the non-coronary aortic sinus, with its initial portion posterior to the aorta, and follow an anterior course toward its normal position (16).

Differentiation of this anomaly from a very short LMCA is difficult (17). Both anomalies can result in opacification of only the LADA or the left Cx artery on the CCA, which leads to the incorrect conclusion that one of the coronary arteries is completely occluded. However, with MDCT-CA, such an erroneous conclusion is avoided because the technique provides clear visualization of the proximal portion of the coronaries. Preoperative knowledge of this anomaly is crucial because the failure to perfuse one of the orifices during surgery could result in myocardial infarction (18).

Ectopic origin of the LMCA from the right sinus of Valsalva

An LMCA originating from the right sinus of Valsalva is a rare coronary anomaly (6, 19). An LMCA originating from the right sinus of Valsalva follows one of four courses: a septal, anterior free wall (Fig. 3), retroaortic, or interarterial course. Determining the course of the vessel is important because the interarterial course is frequently associated with a poor prognosis (6, 16, 20). Unlike CCA, the MDCT-CA images can be reconstructed in multiple planes and in 3D; thus, MDCT-CA provides information on the route of the coronary arteries relative to the cardiac chambers and great vessels, ensuring an accurate diagnosis.

Aorto-ostial lesions

Aorto-ostial lesions are among the most important types of coronary artery disease, and these lesions occur within the first 3 mm of the main coronary vessel as the vessel splits from the aorta. Because complications are associated with aorto-ostial lesions, proper diagnosis and treatment are crucial (1, 21).

In a study involving 33 patients, Kantarci et al. (1) showed that MDCT-CA diagnosed aorto-ostial lesions correctly in 26 patients. The remaining five patients with normal ostia were also correctly identified with MDCT-CA. Seven out of 26 patients with aorto-ostial lesions were not detected with CCA. The authors postulated that this lack of detection likely resulted from positioning the catheter tip beyond the lesion (Fig. 4a and 4b). In addition, five patients with normal ostia were reported to have aorto-ostial lesions using CCA. Catheter-induced spasm is a significant complication associated with CCA. Although the spasm can be resolved by nitroglycerine infusion, it can sometimes be erroneously diagnosed as coronary stenosis. In the study by Kantarci et al. (1), this false diagnosis occurred in five patients whose coronary arteries were found to be normal using MDCT (Fig. 4c and 4d). Therefore, MDCT-CA is useful in preventing false diagnosis due to catheter-induced spasm in patients who have been diagnosed with an aorto-ostial lesion by CCA.

Follow-up of bypass grafts

Coronary artery bypass graft (CABG) surgery has become the mainstay treatment of symptomatic multiple coronary artery disease. Graft patency is the most important variable determining the effectiveness of the CABG surgery (22, 23). CCA has been considered the gold standard technique for assessing CABGs; however, it is invasive, requires hospitalization, and carries the risk of complications. Moreover, catheterization of the CABG may not always be possible (21, 24–26). In addition, in patients with multiple CABGs arising consecutively from the aorta, it may be difficult to determine which one is cannulated using CCA (Fig. 5). To evaluate the patency of the CABGs, distal graft anastomosis, and run-off vessels, MDCT-CA can be used (27).
Myocardial bridging

Myocardial bridging is a congenital anomaly characterized by myocardial encasement of a coronary artery segment that normally has an epicardial course. It is also called a tunneled artery (28). Myocardial bridging may cause clinical symptoms including angina, myocardial infarction, life-threatening arrhythmias, and sudden death (28, 29). Ferreira et al. (30) categorized myocardial bridging as either superficial (75% of cases) or deep (25% of cases). Normally, the majority of myocardial blood flow is in diastole, and thus, systolic compression of the tunneled segment (i.e., superficial bridging) alone cannot sufficiently explain ischemia and its associated symptoms. However, deep myocardial bridging could compromise coronary diastolic
Coronary CT angiography confers superior diagnostic information compared with coronary angiography.

Flow and result in ischemia compared with superficial bridging (30–32).

The diagnosis of bridging with CCA can be challenging because the interpretation of catheter angiography findings requires an experienced eye, and only deep bridges can be detected with CCA (29, 33, 34).

MDCT-CA can readily demonstrate an abnormal intramural course of the coronary artery through the myocardium, its depth, and the length of the involved segment can be readily demonstrated by MDCT-CA (Fig. 6) (29).

Dynamic evaluations can allow the evaluation of the degree of vascular stenosis during different phases of the cardiac cycle.

Coronary artery fistulas

Coronary artery fistulas are rare congenital or acquired coronary artery anomalies that can originate from any of the three major coronary arteries and that may drain into any cardiac chamber or great vessel (35). According to recent reports, coronary artery fistulas can be correctly identified using MDCT (36–38). The use of MDCT-CA is an accurate, fast, robust, and non-invasive method of imaging for diagnosing coronary artery fistulas. Because CCA can identify only a single vessel during a single session, depending on the artery cannulated, in complicated conditions such as when a fistula is present, it may not be possible to determine exactly where the fistula drains (Fig. 7). In such cases, particularly those in which interventional procedures are scheduled, MDCT-CA provides more diagnostic information than CCA.
Coronary artery dissection

Dissection is a pathologic event that develops when blood dissects into the media layer through an intimal tear. When it affects the coronary arteries, it may cause life-threatening myocardial infarction, and therefore, it requires urgent diagnosis and treatment. Spontaneous coronary artery dissection predominantly affects young women, and while very rare, its effects are often severe (39). Spontaneous coronary artery dissection can lead to acute coronary syndrome or ischemic coronary events (40–42).

The size of the dissection may increase during CCA if the false lumen is inadvertently cannulated. Detecting whether the dissected segment extends into the coronary artery ostium is also important. In these cases, arrhythmia and myocardial infarct are common (40–42). Spontaneous coronary artery dissection can lead to acute coronary syndrome or ischemic coronary events (40–42).

The use of MDCT-CA allows noninvasive visualization of the presence and extension of a dissected segment as effectively as CCA (40–42). The knowledge of which is important for preoperative planning, can also be demonstrated with MDCT-CA.

Conditions in which access to coronary ostia is challenging

Arterial tortuosity syndrome is a rare, autosomal recessive disorder of the connective tissue that is characterized by elongation, tortuosity, and aneurysms of the large- and medium-sized arteries (44). Tortuosity of the main vascular structures, caused by different vascular diseases, emerges as an important problem when using CCA imaging in patients with symptoms of angina who require catheterization. Tortuosity at the abdominal aorta and the axillary artery prevent the catheter from being advanced (Fig. 10); therefore, the catheter cannot reach the ostium. The most frequent cause of aortic aneurysm...
Coronary CT angiography confers superior diagnostic information compared with coronary angiography.

Volume 18 • Issue 3

is atherosclerosis (45). Patients with massive aortic aneurysms encompassing the coronary artery ostia can be evaluated with MDCT-CA (Fig. 11) (46). Performing catheter angiography in these patients is very difficult because the widened lumen makes it almost impossible to locate the ostium with the catheter. In addition, turbulence in this region can adversely affect catheter control. In such patients, MDCT is the preferred approach for vessel visualization.

Biventricular cardiac pacing

Cardiac resynchronization therapy is a well-established treatment method for patients with heart failure (47). Implantation with cardiac resynchronization therapy will be successful only if the left ventricle lead can be positioned in a vein that drains this region. The left marginal vein and the posterolateral vein are often the target veins involved in pacemaker lead placement in cardiac resynchronization therapy (48, 49).

Biventricular cardiac pacing is a high-cost treatment method. It is important that the cardiologist have preprocedural information about the veins (Fig. 12). MDCT-CA can provide anatomic details of the cardiac venous anatomy in a noninvasive fashion and provide information regarding the size, number, location, and anatomic variants of the coronary veins so that appropriate catheters can be selected and ordered before performing the procedure (50).

The presence of mediastinal tumors extending into the coronary arteries

The heart is a target organ for many malignant tumors (51). Cardiac metastases are 20–40 times more common than primary cardiac malignancies. The malignancies that are most likely to spread to the heart are lung, breast, and esophageal cancers, as well as leukemia, lymphoma, and melanoma (Fig. 13) (52). If a patient with a primary or secondary cardiac malignancy presents with an angina requiring coronary angiography, the detection of the cause of angina is very important for selecting the appropriate treatment. Unlike CCA, which provides information only about the coronary artery lumen, MDCT-CA yields information about the heart, lungs, and other mediastinal and intrathoracic structures in addition to the coronary arteries (3).

Possible drawbacks of MDCT-CA

The major concerns about MDCT-CA are related to radiation exposure and the use of injected contrast material (53). However, these concerns have become less serious since recent
advancements have dramatically reduced radiation dose and the iodi

cussed contrast material requirement. Another disadvantage of MDCT-CA is the necessity of premedication to decrease heart rate. Despite the decreased required scanning time due to a new generation of equipment, breath holding still poses a problem in MDCT-CA, particularly in elderly patients with poor cardiopulmonary function. To some extent, these disadvantages could be overcome by using new-generation scanners that have rapid image acquisition, such as dual-source CT or scanners with 256 or more detectors (54).

As a conclusion, MDCT-CA has emerged as an accurate, fast, robust, and non-invasive tool for the comprehensive evaluation of the coronary vessels and heart chambers. The advantages of providing a volumetric dataset for the heart with an isotropic submillimeter resolution makes it a good fit for the assessment of congenital anomalies or acquired disease processes involving coronary vessels, heart chambers, and mediastinal structures. The use of MDCT-CA should substitute catheter angiography as the imaging modality of choice for a large spectrum of coronary disorders.

Conflict of interest disclosure

The authors declared no conflicts of interest.

References

Coronary CT angiography confers superior diagnostic information compared with coronary angiography