Local staging of prostate cancer with MRI

Fatma Nur Soylu, Scott Eggener, Aytekin Oto

ABSTRACT

Accurate local staging of prostate cancer is critical for patient management decisions. Conventional and evolving magnetic resonance imaging (MRI) techniques, such as diffusion-weighted imaging, dynamic contrast-enhanced MRI, and MR spectroscopy, are promising techniques in prostate cancer imaging. In this article, we will review the current applications of conventional and advanced MRI techniques in the local staging of prostate cancer.

Key words: prostate cancer • tumor staging • magnetic resonance imaging

A ccurate local staging of prostate cancer is critical for patient management decisions. The presence of locally advanced prostate cancer, in the form of extracapsular extension, seminal vesicle invasion, or regional lymph node metastasis, can affect the choice of treatment. In the last decade, magnetic resonance imaging (MRI) of the prostate has evolved and improved with the introduction of advanced MRI techniques, such as diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE MRI), MR spectroscopy (MRS), and new technologies such as 3 Tesla (T) MRI and endorectal coils. Recently, conventional and advanced MRI have been adopted for prostate cancer imaging and appear to be promising imaging techniques for use in the local staging of this disease. In this article, we will review the current use of these MRI techniques in the local staging of prostate cancer.

Staging of prostate cancer

Although there are several different staging systems for prostate cancer, the most widely used system is currently the TNM system. In the TNM staging system, T1 refers to organ-confined tumors that are clinically and radiologically occult. T2 refers to organ-confined tumors that are clinically or radiologically apparent. T3 refers to tumors that extend outside the prostatic capsule in the form of extracapsular extension or seminal vesicle invasion. T4 refers to tumors that invade adjacent structures. N1 indicates the presence of locoregional lymph node metastasis, and M1 indicates the presence of distant metastases. The American Joint Committee on Cancer has incorporated prognostic information from the Gleason score and preoperative prostate-specific antigen (PSA) levels into the TNM system (1).

The most crucial aspect of prostate cancer staging is differentiating between organ-confined and non-organ-confined disease. Extracapsular extension is associated with a greater risk of a positive surgical margin, further decreasing the chance of long-term cancer control (2, 3). Seminal vesicle invasion is associated with an increased incidence of lymph node metastasis and a worse prognosis (4). The presence of lymph node metastasis at the time of prostate cancer diagnosis is associated with a high probability of progression to distant metastases and a poor prognosis (5, 6). The probability of the presence of extracapsular extension, seminal vesicle invasion, and lymph node metastasis is determined clinically from staging nomograms, such as the Kattan and Partin nomograms, which estimate the pathologic stage based on the pretreatment PSA level, the clinical stage, and the Gleason grade of the biopsy specimen (7, 8). Although it has been reported that staging nomograms do not incorporate the results of imaging studies that could assist in predicting extracapsular extension and seminal vesicle invasion (3, 8, 9), MRI contributes significant incremental value to the nomograms for the
Recently, in a consensus meeting, 16 expert authors attempted to make recommendations regarding the standardization of multiparametric MRI for detecting, localizing, and characterizing prostate cancer. The agreement rate was relatively low (approximately 60%) for defining the criteria, which mainly concerned conducting, interpreting, and reporting MRIs in patients with prostate cancer (18). This shows that determining such criteria is extremely difficult. Nevertheless, similar studies are needed for prostate cancer staging.

T2-weighted MRI

Conventional T2-weighted sequences were the first MRI techniques to localize and stage prostate cancer and are still the most widely used imaging sequences. Prostate zonal anatomy and prostate cancer are best observed on multiplanar T2-weighted MRI. Furthermore, the prostatic capsule appears as a thin rim of low signal intensity surrounding the peripheral zone, and the seminal vesicles, which demonstrate high signal intensity because of their fluid content, are best evaluated anatomically on T2-weighted MRI. Lymphadenopathy can also be demonstrated easily by T2-weighted imaging. Hence, thin-section, high-spatial resolution fast spin-echo T2-weighted images in the axial, sagittal, and coronal planes are the main sequences for the local staging of prostate cancer with MRI.

Extracapsular extension with T2-weighted MRI

In previous studies, the reported sensitivities and specificities of MRI for the detection of extracapsular extension were in the range of 29%–80% and 47%–100%, respectively (19–23). Patients with a tumor volume larger than 0.3 cm³ are at a high risk of developing extracapsular extension (24). Criteria for detecting extracapsular extension on T2-weighted MRI include at least one of the following: irregular capsular bulge, disruption of the prostatic capsule, extension into the periprostatic fat, broad contact with the capsule (>12 mm), obliteration of the rectoprostatic angle, or asymmetry or involvement of the neurovascular bundles (Figs. 1 and 2) (25, 26). Multivariate analysis has shown that obliteration of the rectoprostatic angle and asymmetry of the neurovascular bundle are the strongest predictive factors for extracapsular extension (25). Tempany et al. (27) reported that the sensitivity, specificity, and overall accuracy of T2-weighted MRI for neurovascular bundle invasion were 68%, 59%, and 64%, respectively.

Seminal vesicle invasion with T2-weighted MRI

In previous studies, sensitivity and specificity levels for diagnosing seminal vesicle invasion with MRI were in the range of 22%–77% and 80%–99%, respectively (19–22, 28). The main diagnostic criteria for seminal vesicle invasion on T2-weighted MRI are the lack of normal seminal vesicle architecture, focal or diffuse areas of low signal intensity within the seminal vesicle, low signal intensity within the seminal vesicle causing mass effect, enlarged ejaculatory ducts with low signal intensity, thickening of the ductus deferens, obliteration of the angle between the prostate and seminal vesicle on sagittal images, direct extension of the low signal intensity of tumor from the base of the prostate to the seminal vesicle, and non-contiguous areas of low signal intensity within the seminal vesicle (20, 29). Low signal intensity within the seminal vesicle and lack of preservation of the normal architecture of the seminal vesicle have shown the highest sensitivity and specificity with T2-weighted MRI (Fig. 3) (20). The presence of hemorrhage after biopsy can also result in low signal intensity within the seminal vesicle. Therefore, it is critical to combine the pre-contrast T1-weighted images with T2-weighted images in the evaluation of seminal vesicle invasion. In hemorrhage, the lower signal intensity of the seminal vesicle wall and the architecture of the seminal vesicle are preserved (20). Additionally, inflammation, amyloidosis, atrophy, or inadequate distention of the seminal vesicles may cause wall thickening and complicate the evaluation for tumor invasion by prostate cancer.

Lymph node metastasis with T2-weighted MRI

In previous studies, MRI has been shown to have a low sensitivity (27%–60%) for the detection of lymph node metastasis, although it has a high specificity (98%) and negative
predictive value (96%) (30–32). With conventional MRI, the major criteria for lymph node metastasis assessment are the size and, to a lesser extent, the shape of the lymph node. Lymph nodes are considered to be malignant if the short axis diameter is elongated and larger than 10 mm in diameter or is round and larger than 8 mm in diameter (Fig. 4) (31).

Figure 1. a–e. Extracapsular invasion in a 67-year-old man with histopathologically confirmed T3a adenocarcinoma of the right prostate gland (Gleason score on biopsy 4+3=7, PSA before surgery 15 ng/mL, TNM stage T3aN0M0 on both MRI and histopathology). An axial T2-weighted turbo spin-echo (TSE) MRI (a) of the middle third of the prostate with a focal hypointense area of cancer in the right lateral peripheral zone and a slight irregular capsular bulging, is consistent with extracapsular extension (arrows). An ADC map (b) shows a focal hypointense lesion extending outside the capsule, corresponding to a low signal intensity area of a tumor on the T2-weighted images and irregular capsular bulging (arrows). An early post-contrast subtraction image (c) demonstrates intense focal enhancement of the cancerous lesion and irregular capsular bulging (arrow). A color-coded wash-out map (d) shows a focal area of wash-out in the location of the cancer. A time-relative signal intensity curve (e) for the region of interest placed in the peripheral zone tumor reveals early and higher peak enhancement with early wash-out of the tumor.

Diffusion-weighted MRI

DWI is based on the movement of water molecules within the intracellular and extracellular spaces. This movement causes a signal decay on
DWI due to the dephasing of protons between the two diffusion gradients (33). When pathology causes an increase in tissue cellularity or cellular swelling, water motion becomes restricted and DWI shows high signal intensity in this area (34). Apparent diffusion coefficient (ADC) maps provide a quantitative analysis of DWI by measuring the degree of diffusion. When the diffusion of water molecules is restricted, the ADC value decreases. High b values (often 1000 s/mm²) are commonly preferred in prostate MRI studies (35).

Diffusion tensor imaging (DTI) is a new emerging technique that is based on the calculation of anisotropic molecular diffusion of water molecules. DTI allows mapping of the microstructural fiber orientation of the tissue in three dimensions. Currently, DTI is more commonly used for investigating the normal prostatic structure and detecting prostate cancer. It has been reported that fiber tracking in the prostate may show the spread of cancer beyond the prostatic capsule (36).

Extracapsular extension with DWI

DWI and ADC maps have not been used to predict extracapsular extension in prostate cancer because of distortions, artifacts, and poor spatial resolution. Recent technical advancements, such as echo planar imaging with fat suppression, can provide increased signal-to-noise ratios and spatial resolutions and may be used for the evaluation of extracapsular extension (Figs. 1 and 2).

Seminal vesicle invasion with DWI

Restricted diffusion is also expected when the seminal vesicles are invaded by prostate cancer cells (Fig. 3), compared with normal seminal vesicles, which are mostly composed of seminal fluid with or without hemorrhage (37). Kim et al. (37) retrospectively evaluated the accuracy of combined T2-weighted MRI and DWI compared with T2-weighted MRI alone for predicting seminal vesicle invasion in patients with prostate cancer. This study was performed with a 3 T MRI, using a phased-array coil. The authors used ADC maps within the seminal vesicle without performing a quantitative analysis and reported that the use of T2-weighted MRI with DWI was more specific and accurate than that of T2-weighted MRI alone for the prediction of seminal vesicle invasion and noted that the addition of DWI to T2-weighted MRI showed significant improvement in diagnostic accuracy among less experienced readers. For the detection of seminal vesicle invasion in prostate cancer patients using 3 T MRI, T2-weighted images combined
Local staging of prostate cancer with MRI

• with DWI appear to be more accurate than T2-weighted imaging alone. Ren et al. (38) reported a higher accuracy rate in this setting in a study that compared the area under the receiver operating characteristic curve (AUC), which was 0.89 for the combination of T2-weighted MRI and DWI and 0.77 for T2-weighted MRI alone. Although some previously reported studies showed a significant overlap between ADC values for prostate cancer, benign prostate hyperplasia, prostatitis, and even normal tissue (39, 40), there are recent reports which have shown that DWI is valuable in detecting, localizing, and grading prostate cancer and the lowest ADC values may indicate the regions to be biopsied (41), and moreover DWI is more superior to DCE MRI in the detection of prostate cancer (42). Therefore, the routine use of DWI for seminal vesicle invasion requires validation.

Lymph node metastasis with DWI

DWI has also been evaluated in the analysis of pelvic lymph nodes. Eiber et al. (43) performed DWI of the pelvis at 1.5 T for investigating lymph node metastasis in patients with prostate cancer. The authors found a significant difference between the mean ADC value of malignant versus benign lymph nodes (43). However, there is still substantial overlap between ADC values of benign and malignant lymph nodes, which precludes the clinical use of DWI for lymph node characterization. Additionally, diffusion-weighted whole-body MRI with background body signal suppression has the potential to detect metastatic lymph nodes (44, 45).

DCE MRI

DCE MRI has emerged as a promising modality for prostate cancer imaging. The concept of DCE MRI is based on changes in the vascular characteristics of cancerous tissue compared with normal tissue. In cancerous tissue, angiogenesis (budding of new blood vessels), vasculogenesis (de novo formation of blood vessels), increased vascular permeability, and a larger interstitial space create a marked increase in the transfer rate of contrast material from the intravascular space to the extravascular/interstitial space. Time intensity curves and tracer kinetic models are used for extracting perfusion-related parameters from DCE MRI (Fig. 1) (46–50). Early, rapid, and strong enhancement with quick wash-out of contrast material is highly suggestive of prostate cancer in time-intensity curves (51, 52). Tracer kinetic models describe the microscopic distribution of contrast agent between the vascular and extravascular spaces over time. Various tracer kinetic models have been introduced by investigators. The
Two-compartment model is the most widely used pharmacokinetic model for DCE MRI analysis. In this model, K_{trans} is the influx constant between plasma and extravascular extracellular space (EES), v_e is the volume of EES per unit volume of tissue (leakage space), and k_{ep} is the efflux constant between the EES and the blood plasma. Limitations of this type of quantitative analysis include the large number of parameters that must be interpreted and a lack of consensus with regard to the optimal acquisition protocols and perfusion parameters for differentiating cancer from normal tissue. Additionally, these parameters may overlap considerably, decreasing the specificity of this technique for cancer detection (24, 47, 53). Therefore, a standard MRI protocol for DCE MRI in prostate cancer staging as well as detection of prostate cancer, has not been completely established. Further comprehensive studies of this technique are needed, including fast imaging sequences, minimal artifacts, and high contrast resolution. To increase the accuracy of imaging, DCE MRI should be performed with fast temporal resolution, (<3 s) high spatial resolution and long acquisition times (54).

Extracapsular extension with DCE MRI

Previous DCE MRI studies obtained high temporal resolution at the expense of spatial resolution. These techniques used thick sections and had lower accuracy rates for prostate cancer staging (24, 47). Bloch et al. (54) reported that addition of high spatial-resolution DCE MRI has improved the accuracy of T2-weighted MRI compared with T2-weighted MRI alone in the assessment of extracapsular extension (AUC 86% vs. 96%, respectively). In their study, color-coded schemes were obtained with a model that incorporated three time points from the DCE MRI. These images were analyzed for the presence of bright red extracapsular pixel clusters larger than 3 mm in diameter, which are considered to be suspicious for extracapsular extension (54). Fütterer et al. (55) fused parametric maps of DCE MRI with T2-weighted images in an attempt to differentiate...
stage T2 from stage T3 prostate cancer. The authors used the following DCE MRI parameters to evaluate the presence of extracapsular extension in prostate cancer: presence of high peak enhancement, asymmetric high peak enhancement, wash-out, and shorter onset time or increased time-to-peak. They reported that the addition of DCE MRI can significantly improve the interpretation of less experienced readers compared with T2-weighted MRI alone (AUC 66%, 82%, respectively), but that it made no additional contribution to experienced readers’ staging performance (55).

Seminal vesicle invasion with DCE MRI

The combination of peak enhancement with the presence of contrast material wash-out is highly suggestive of prostate cancer, both for peripheral and central cancers (47, 51). Ogura et al. (56) interpreted early enhancement in the seminal vesicles on dynamic T1-weighted images as seminal vesicle invasion and reported that this finding has accuracy rates as high as 97% for seminal vesicle invasion. Fütterer et al. (55) found that the addition of contrast-enhanced MRI only benefited less experienced readers in terms of determining whether seminal vesicle invasion and extracapsular extension were present.

Lymph node metastasis with DCE MRI

To our knowledge, no studies have evaluated the ability of DCE MRI to diagnose lymph node metastasis from prostate cancer. Another novel technique, MR lymphography, has been introduced recently. MR lymphography uses intravenously administered ferumoxtran-10, which belongs to a class of nanoparticle-based contrast agents that are referred to as ultrasmall superparamagnetic iron oxide. Harisinghani et al. (57) reported high sensitivity (100%) and specificity (95.7%) values in a study investigating lymph node metastasis of the prostate cancer with this technique. A clear advantage of MR lymphography is that it is able to detect small metastatic lymph nodes. Although these agents were recently pulled from the market and are not currently available, clinical trials are continuing with a derivative of ferumoxtran-10, ferumoxytol, for the detection of lymph node involvement in prostate cancer.

MRS

MRS is based on the chemical shift resulting from the shield formed by the electron cloud surrounding hydrogen nuclei in molecules (58). MRS identifies metabolites of interest in prostate tissue by locating the peaks of chemical compounds. In prostate cancer, increases in the choline and creatine peaks and a decrease in the citrate peak are expected findings (Fig. 5). MRS requires a very homogeneous magnetic field (shimming). Advanced operating skills are also needed for post-processing of the prostastic spectra to achieve high-quality data, so the process has a relatively long post-processing time. Post-biopsy hemorrhage lowers the sensitivity of MRS by degrading the MR spectra (59).

MRS has a high specificity for prostate cancer detection, but it has a low sensitivity because of partial volume effects and strong signals from the surrounding tissue, especially the seminal vesicles, stromal benign prostatic hyperplasia and prostatitis (60).

Local staging with MRS

Studies that investigated MRS as a method of detecting extracapsular extension in patients with prostate cancer are somewhat controversial. It has been reported that using MRS with conventional MRI may improve overall staging by identifying foci of extracapsular disease (10). Yu et al. (61) reported that the addition of three-dimensional (3D) MRS imaging to MRI improved the diagnostic accuracy for extracapsular extension only among less experienced readers. These authors used the location and number of abnormal MRS voxels as the primary MRS imaging data for the evaluation of extracapsular extension (61). In their study, patients with the least extensive tumors on 3D MRS (<1 cancer voxel per section) were found to have only a 6% risk for extracapsular extension, whereas patients with the most extensive tumors (>4 cancer voxels per section) had an 80% risk of extracapsular extension (61). The authors therefore claimed that 3D MRS has potential as a predictor of extracapsular extension (61). Because the resolution of MRS is lower than that of conventional MRI, MRS may not depict small foci of extracapsular spread. Wetter et al. (62) showed that there is no significant improvement in detecting extracapsular extension in patients with prostate cancer when using MRI vs. MRS. MRS is therefore not recommended for use in the routine staging of prostate carcinoma (62).

MRS does not play a role in the assessment of the probability of seminal vesicle invasion. No comprehensive study in the literature has used MRS to detect lymph node involvement in prostate cancer. However, Heijmink et al. (63) reported high choline levels in an enlarged metastatic lymph node in a patient with recurrent prostate cancer. They claimed that it was possible to use MRS with a 3 T MRI to quantify the total amount of choline-containing compounds in lymph node metastases located deep inside the body (63).

Conclusion

Accurate local staging of prostate cancer is essential for the management of this disease. T2-weighted scans are still the main MRI sequence for local staging in prostate cancer. DWI, DCE MRI, and MRS are available but evolving techniques and can be considered as a part of a multi-modality MRI protocol for imaging of the prostate gland. To interpret these studies accurately, radiologists should be aware of the advantages, limitations, and technical background of these functional techniques. There is still a need for multi-institutional trials to standardize functional MRI techniques and interpretation criteria.

Conflict of interest disclosure

The authors declared no conflicts of interest.

References

