Quantitative morphometric analysis of hepatocellular carcinoma: development of a programmed algorithm and preliminary application

PURPOSE
The quantitative relationship between tumor morphology and malignant potential has not been explored in liver tumors. We designed a computer algorithm to analyze shape features of hepatocellular carcinoma (HCC) and tested feasibility of morphologic analysis.

MATERIALS AND METHODS
Cross-sectional images from 118 patients diagnosed with HCC between 2007 and 2010 were extracted at the widest index tumor diameter. The tumor margins were outlined, and point coordinates were input into a MATLAB (MathWorks Inc., Natick, Massachusetts, USA) algorithm. Twelve shape descriptors were calculated per tumor: the compactness, the mean radial distance (MRD), the RD standard deviation (RDSD), the RD area ratio (RDAR), the zero crossings, entropy, the mean Feret diameter (MFD), the Feret ratio, the convex hull area (CHA) and perimeter (CHP) ratios, the elliptic compactness (EC), and the elliptic irregularity (EI). The parameters were correlated with the levels of alpha-fetoprotein (AFP) as an indicator of tumor aggressiveness.

RESULTS
The quantitative morphometric analysis was technically successful in all cases. The mean parameters were as follows: compactness 0.88±0.086, MRD 0.83±0.056, RDSD 0.087±0.037, RDAR 0.045±0.023, zero crossings: 6±2.2, entropy 1.43±0.16, MFD 4.40±3.14 cm, Feret ratio 0.78±0.089, CHA 0.98±0.027, CHP 0.98±0.030, EC 0.95±0.043, and EI 0.95±0.023. MFD and RDAR provided the widest value range for the best shape discrimination. The larger tumors were less compact, more concave, and less ellipsoid than the smaller tumors (P < 0.0001). AFP-producing tumors displayed greater morphologic irregularity based on several parameters, including compactness, MRD, RDSD, RDAR, entropy, and EI (P < 0.05 for all).

CONCLUSION
Computerized HCC image analysis using shape descriptors is technically feasible. Aggressively growing tumors have wider diameters and more irregular margins. Future studies will determine further clinical applications for this morphologic analysis.
Materials and methods

This study was in compliance with the Health Insurance Portability and Accountability Act, and the institutional review board at our institution granted approval with consent waivers for inclusion in the study.

Patients and tumors

Imaging studies of 165 consecutive patients with HCC were reviewed at our institutional multidisciplinary liver cancer management conferences between 2007 and 2010. HCC in these patients was diagnosed by percutaneous biopsy or noninvasively based on the presence of a hepatic mass larger than 2 cm in diameter with characteristic imaging findings of arterial phase contrast enhancement and portal venous phase washout. The inclusion criteria consisted of a diagnosis of HCC limited to T0-T4, M0 stage disease, and the availability of baseline imaging using multiphase helical computed tomography (CT) or dynamic magnetic resonance imaging (MRI). The lack of accessible baseline imaging and M1 stage HCC were exclusion criteria.

Image acquisition

The CT studies were obtained with a triple phase protocol on a LightSpeed VCT scanner (GE Healthcare, Waukesha, Wisconsin, USA) after intravenous injection of 150 mL iohexol (Omnipaque-300, Amersham Health, Princeton, New Jersey, USA). The acquisition parameters included 2.5-mm collimation, 2.5-mm reconstruction interval, and 0.984:1 pitch. The MRI was performed with a 1.5 Tesla (T) system (Signa EXCITE 1.5T, GE Healthcare) with an eight-channel body coil. The gadolinium-enhanced dynamic imaging was acquired by three-dimensional (3D) gradient-echo sequences (LAVA, GE Healthcare) after the intravenous administration of 0.2 mL/kg of gadodiamide (Omniscan, GE Healthcare) or 0.1 mL/kg of Gadobenate disodium (Eovist, Bayer HealthCare Pharmaceuticals, Montville, New Jersey, USA). The acquisition parameters included TR 4.0–4.3 ms, TE 2.0 ms, flip angle 12°, matrix 320×192, slice thickness 5 mm, and slice gap 2.5 mm.

Tumor contour extraction

Two independent operators evaluated the baseline tumor cross-sectional imaging and categorized the tumor enhancement pattern as either typical (arterial enhancement followed by contrast washout in delayed phases) or atypical. The final tumor classification was made by consensus decision. A radiologist with nine years of experience then extracted arterial phase images at the representative axial slice using the widest possible tumor diameter (Fig. 1). For the analysis of multiple tumors, we selected the largest dominant first-treated lesion, which was identified as the “primary index tumor” (23). The tumor margins were sampled using the ImageJ software multipoint tool, and a computerized linear interpolation using MATLAB (MathWorks Inc., Natick, Massachusetts, USA) connected the sample points with additional boundary points to form a more complete border. Using this interpolation step, two radiologists could outline the tumor boundary differently and still produce two final coordinate sets of similar, if not equal, lengths, hence reducing inter-observer variability. The aspect ratio of each image was used to convert the units for length and area from pixels to cm and cm².

Tumor shape analysis and feature extraction

Each set of coordinates was input into MATLAB, which calculated the area, perimeter, and 12 shape features for each tumor. The selected shape descriptors have been studied in CAD algorithms for various cancers and share the important property of independence from shape resizing, translation, and rotation.

Tumor shape descriptors

Brief descriptions of each shape descriptor are presented in Table 1, and
more detailed descriptions and equations for each shape descriptor may be found in the Appendix.

Qualitative and statistical analysis

The MATLAB algorithm superimposed the tumor convex hull and fitting ellipse onto each tumor contour. To confirm the validity of the algorithm, we reviewed and compared these composite images to the original radiologic images. The morphometric parameters of different tumor sizes were compared using an analysis of variance. The parameters between pairs of tumor cohorts were compared using Student’s t test. A correlation matrix of shape features was constructed using Microsoft Excel 2010 software (Microsoft Inc., Redmond, Washington, USA). The parameters of the AFP producing tumors and the nonproducing tumors were compared to test the hypothesis that more aggressive tumors (as manifested by greater AFP production) have quantitative parameters that are reflective of greater morphologic irregularity. The statistical analysis was performed using a commercially available software (Statistical Package for Social Sciences, version 18, SPSS Inc., Chicago, Illinois, USA).

Results

Patients and tumors

Our final patient cohort included 118 (72%) of the 165 HCC patients. The 118 patients had undergone multiphase helical CT or dynamic contrast-enhanced MRI between 2007 and 2010 for diagnosis and/or staging of HCC. Twenty-eight (17%) of the initial 165 patients were excluded from the final cohort because of unavailable imaging from outside hospitals, and six (4%) were excluded due to the lack of multiphase contrast-enhanced imaging studies. An additional 13 patients (8%) were excluded due to advanced disease. The final study cohort included 95 males (81%) and 23 females (19%), and the mean patient age was 61±10 years (age range, 26–87 years). CT scans were performed on 86 (73%) of 118 patients, and 32 (27%) of 118 patients underwent MRI. In 68 patients (58%), HCC was diagnosed by imaging alone. In the remaining 50 patients (42%), HCC was confirmed through biopsy. The histologic grade was provided for 44 of 52 biopsied tumors; 16 tumors were graded as well-differentiated, 21 as moderately differentiated, and seven as poorly differentiated. The mean index tumor diameter was 4.6±3.6 cm (range, 1–23 cm). Twenty-five percent (29 of 118) of the index tumors were located in the left hepatic lobe, and 89 (75%) of 118 index tumors were located in the right hepatic lobe. Solitary tumors were found in 65 (55%) of 118 patients, whereas 53 (45%) of 118 patients had multifocal disease. The serum AFP

Figure 2. Each tumor is shown with the radial distance (RD) defined as the Euclidean distance from the centroid \((x_c, y_c)\) to the boundary point \((x_k, y_k)\). All of the RD are normalized to a maximum radial distance (red), and the length is defined as 1. In this case, Tumor 1 mean RD (MRD) is 0.88 and RD standard deviation (RDSD) is 0.057, while Tumor 2 MRD is 0.72 and RDSD is 0.169.

Figure 3. The radial distance area ratio (RDAR) indicates the degree to which a tumor extends outside the equivalent circle centered at centroid \((x_c, y_c)\) with a radius equal to the MRD. Zero crossing count \((z)\) indicates how frequently the tumor contour crosses the equivalent circle (red arrow heads).

Figure 4. Histograms showing the distribution of radial distances. The entropy estimator \((E)\) is calculated from the histogram.
value was not available for three patients at the time of diagnosis.

Tumor morphometric analysis

Computed tumor morphometric analysis and shape descriptor calculation was technically successful in all cases (Table 2). Mean number of sample points was 30±14 (range, 13–83) for each tumor. The total execution time for the MATLAB algorithm for all 118 tumors was 59 s. A postimage analysis comparison of the composite images to the radiologic images yielded no major discrepancies; therefore, we confirmed that our algorithm accurately performed its mathematical analysis.

The mean tumor areas and perimeters were 20.5±34.4 cm² (range, 0.8–284 cm²) and 14.2±10.6 cm (range, 3.3–65.6 cm), showing a wide variation in tumor sizes. Of the 12 shape-based descriptors analyzed, three had the widest dispersion in their distributions according to their coefficients of variations (CV): mean Feret diameter (MFD) (CV=0.71), the radial distance area ratio (RDAR) (CV=0.51), and the radial distance standard deviation (RDSD) (CV=0.42). This dispersion suggests that MFD, RDAR, and RDSD may best allow for the discrimination of tumor shapes. However, the convex hull area (CHA) and perimeter (CHP) ratios, the elliptic compactness (EC), and the elliptic irregularity (EI) are less useful because the majority of their values were too close to 1 (the value expected for a perfect ellipse) and too narrowly distributed (CV ≤0.045) to show major differences in tumor morphology by themselves.

<table>
<thead>
<tr>
<th>Shape feature</th>
<th>Brief description</th>
<th>Minimum value</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compactness (Fig. 1)</td>
<td>How well boundary encloses largest possible area for perimeter</td>
<td>0</td>
<td>1 (for a circle)</td>
</tr>
<tr>
<td>Mean radial distance (Fig. 2)</td>
<td>Mean of all radial distances</td>
<td>0</td>
<td>1 (for a circle)</td>
</tr>
<tr>
<td>Standard deviation of the radial distance (Fig. 2)</td>
<td>Standard deviation of all radial distances</td>
<td>0 (for a circle)</td>
<td>1</td>
</tr>
<tr>
<td>Radial distance area ratio (Fig. 3)</td>
<td>How much tumor extends outside equivalent circle centered on tumor with radius equal to mean radial distance</td>
<td>0</td>
<td>1 (for a circle)</td>
</tr>
<tr>
<td>Zero crossing count (z) (Fig. 3)</td>
<td>How often tumor contour crosses its equivalent circle</td>
<td>0</td>
<td>Approaches ∞ (for a meandering, lobulated contour)</td>
</tr>
<tr>
<td>Histogram estimator of entropy (Fig. 4)</td>
<td>Probabilistic measure of variability in tumor radial distances</td>
<td>Approaches 0 (for a compact tumor)</td>
<td>Approaches ∞ (for an irregular tumor)</td>
</tr>
<tr>
<td>Feret ratio (Fig. 5)</td>
<td>Ratio of minimum Feret diameter to maximum Feret diameter</td>
<td>0</td>
<td>1 (for a circle)</td>
</tr>
<tr>
<td>Mean Feret diameter (Fig. 5)</td>
<td>Mean of all Feret diameters from all orientations</td>
<td>Size dependent</td>
<td>Size dependent</td>
</tr>
<tr>
<td>Convex hull area ratio (Fig. 6)</td>
<td>Measure of tumor convexity</td>
<td>0</td>
<td>1 (for a convex shape without concavities)</td>
</tr>
<tr>
<td>Convex hull perimeter ratio (Fig. 6)</td>
<td>Measure of tumor convexity</td>
<td>0</td>
<td>1 (for a convex shape without concavities)</td>
</tr>
<tr>
<td>Elliptic compactness (Fig. 7)</td>
<td>How closely tumor resembles ellipsoid</td>
<td>0</td>
<td>1 (for an ellipse)</td>
</tr>
<tr>
<td>Elliptic irregularity (Fig. 7)</td>
<td>How closely tumor resembles ellipsoid</td>
<td>0</td>
<td>1 (for an ellipse)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shape descriptor</th>
<th>Mean</th>
<th>Range</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor area (cm²)</td>
<td>20.5</td>
<td>0.8–284</td>
<td>34.4</td>
<td>1.68</td>
</tr>
<tr>
<td>Tumor perimeter (cm)</td>
<td>14.2</td>
<td>3.3–65.6</td>
<td>10.6</td>
<td>0.75</td>
</tr>
<tr>
<td>Compactness</td>
<td>0.88</td>
<td>0.52–0.98</td>
<td>0.086</td>
<td>0.097</td>
</tr>
<tr>
<td>Mean RD</td>
<td>0.83</td>
<td>0.64–0.93</td>
<td>0.056</td>
<td>0.067</td>
</tr>
<tr>
<td>RD standard deviation</td>
<td>0.087</td>
<td>0.022–0.210</td>
<td>0.037</td>
<td>0.42</td>
</tr>
<tr>
<td>RD area ratio</td>
<td>0.045</td>
<td>0.009–0.136</td>
<td>0.023</td>
<td>0.51</td>
</tr>
<tr>
<td>Number of zero crossings</td>
<td>6</td>
<td>4–16</td>
<td>2.2</td>
<td>0.37</td>
</tr>
<tr>
<td>Entropy</td>
<td>1.43</td>
<td>0.95–1.82</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>MFD (cm)</td>
<td>4.40</td>
<td>1.06–20.3</td>
<td>3.14</td>
<td>0.71</td>
</tr>
<tr>
<td>Feret ratio</td>
<td>0.78</td>
<td>0.50–0.93</td>
<td>0.089</td>
<td>0.11</td>
</tr>
<tr>
<td>Convex hull area ratio</td>
<td>0.98</td>
<td>0.86–1.0</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>Convex hull perimeter ratio</td>
<td>0.98</td>
<td>0.83–1.0</td>
<td>0.030</td>
<td>0.031</td>
</tr>
<tr>
<td>Elliptic compactness</td>
<td>0.95</td>
<td>0.75–0.99</td>
<td>0.043</td>
<td>0.045</td>
</tr>
<tr>
<td>Elliptic irregularity</td>
<td>0.95</td>
<td>0.84–0.99</td>
<td>0.023</td>
<td>0.025</td>
</tr>
</tbody>
</table>

CV, coefficient of variation; HCC, hepatocellular carcinoma; RD, radial distance; SD, standard deviation; MFD, mean Feret diameter.
Table 3 shows the correlations between the shape descriptors, which were performed to elucidate any inter-relationships between the shape metrics and to determine which of these parameters might be interchangeable. Two distinct clusters emerged in which the descriptors exhibited very strong correlations with one another: (1) compactness, mean radial distance (MRD), RDSD, RDAR, and entropy \((r > 0.83\) or \(r < -0.83\)); and (2) compactness, CHA, CHP, EC, and EI \((r \geq 0.74\). In contrast, the three size-dependent descriptors (tumor area and perimeter, MFD) were noted to correlate poorly with all of the size-independent shape features \((-0.55 \leq r \leq 0.31\), implying that the shape of a tumor is distinct from its size.

Table 4 shows the results of comparative analysis of tumor shape features between different tumor size categories. Significant differences were found between the smaller and larger tumors for size-dependent features as well as a handful of size-independent measures (particularly compactness, RDSD, RDAR, CHP, and EC \([P \leq 0.003\) for all]). This finding confirms that these mathematical parameters can be used to stratify tumors by their index diameters and also implies that larger tumors collectively tend to be less compact, more concave, and less ellipsoid.

The tumor marker elevation was significantly increased in the AFP producing tumors \((116 068.9 \text{ vs. } 33.6 \text{ ng/mL}, P < 0.0001\) \(\text{(Table 5)}\). A comparative analysis showed that AFP producing tumors displayed more morphologic irregularity than nonproducing tumors and also had larger diameters \((6.1 \text{ vs. } 3.8 \text{ cm}, P = 0.004\), less compactness \((0.854 \text{ vs. } 0.894, P = 0.033\), smaller MRDs \((0.815 \text{ vs. } 0.838, P = 0.045\), greater RDSD \((0.098 \text{ vs. } 0.083, P = 0.038)\), greater RDAR \((0.053 \text{ vs. } 0.042, P = 0.027)\), and greater entropy
Patients who underwent biopsy had lower AFP levels on average (736 vs. 52 567 ng/mL, \(P = 0.131 \)) with only 8% (4/50) having AFP levels above a 400 ng/mL threshold (21 of 65 [32%] in the nonbiopsied cohort, \(P = 0.0003 \)).

Interestingly, zero crossing count was shown to be a poor measure of morphologic irregularity overall because of its inability to distinguish the largest from the smallest tumors (Table 4) and its negative correlations between RDAR, RDSD, and entropy (Table 3). The latter was particularly surprising because an irregular contour, which would have high values for RDAR, RDSD, and entropy, would be anticipated to cross its equivalent circle a greater number of times.

Discussion

Tumor morphologic or shape analysis is a promising area of research that can expand the power of CAD techniques. The current literature on the image analysis of liver tumors has not been as extensive as that on other tumors. Shape analysis using compactness has been applied to characterize tumor progression in rat hepatomas (25) but not in human subjects. There has been preliminary development of CAD algorithms for hepatic tumors visualized on ultrasonography (26) and CT (27); however, the algorithms rely on a limited set of shape descriptors or qualitative scoring criteria to characterize the tumor shape. One recent pilot study utilized five shape descriptors to develop an image retrieval system for liver lesions (28), and another study focused on computer-aided detection of HCC tumors on CT (29); neither study attempted to evaluate the malignant potential of tumors. In fact, we are not aware of any studies examining the feasibility of applying to HCC the wide array of shape features already developed in lung and mammography CAD systems.

In this investigation, we demonstrated that the computer-aided image analysis of HCC tumors using 12 shape descriptors is technically feasible and efficient. Although the contour extraction process required manual attention, the computerized image analyses used to calculate the shape descriptors was highly efficient, requiring less than a minute to execute. The biggest strength of our algorithm is its ability to conduct multiple feature extractions for a single tumor using only a few sample points for its input. Another strength of the algorithm is its flexibility; although we programmed our algorithm to measure only 12 descriptors, it is easily customizable to measure additional shape features that have not yet been examined, including the boundary roughness (6), the convex hull depth (26), the lobulation index (8), and the spiculation index (30). Finally, while the algorithm was specifically developed to assess HCC, it has the ability to be more broadly applied to different tumors in other organ systems.

In analyzing the HCC shape, we found that no single morphologic parameter alone sufficiently describes the tumor shape. A receiver operator characteristic curve analysis (not presented) with individual shape parameters did not identify any thresholds that reliably distinguished “regular” from “irregular” (subject to definition) tumors with high sensitivity or specific-
In conclusion, computerized HCC shape analysis is feasible, and the preliminary application showed that aggressive tumors have irregular morphologies; hence, quantitative shape descriptors can improve the diagnosis of HCC lesions chosen for biopsy had regular morphologic features that may have raised a lower degree of suspicion than more irregular tumors (i.e., in the non-biopsied cohort). Hence, it is plausible to surmise that gross tumor shape can influence the clinical suspicion of malignancy.

There are several limitations in our investigation. First, despite attempts to objectify the image analysis, our algorithm input is still dependent on sample points that were chosen manually. Second, one radiologist traced the tumor margins, limiting the ability to determine the effect of intra- and inter-observer bias. We attempted to reduce the potential inter-observer variability by using computerized linear interpolation to help standardize the tumor boundary coordinates. Third, undersampling a tumor boundary can distort its morphological parameters. We attempted to correct for this by selecting at least 13 points per lesion, particularly the smallest ones, while allowing up to 83 points for the largest lesions. Fourth, the extent of the tumor to the liver surface, vasculature, or other nonparenchymal tissue (e.g., gallbladder) may affect the tumor boundary through a tendency to assume the natural smoother contour of such an anatomic structure. Fifth, our algorithm focuses on external contour and ignores internal characteristics, such as hemorrhage, calcification, central scar, or gross fat, which may be features of different HCC pathological subtypes (34). Sixth, our two-dimensional shape analysis attempted to capture the representative contour of a three-dimensional (3D) object at its maximum transverse diameter. This method can become invalid for a tumor that is longer in the craniocaudal axis than in the anteroposterior axis, and morphologic analyses for multiple axial planes, or even 3D volumetry, may be necessary to accurately describe a HCC external surface. Seventh, the current study represents a descriptive investigation without extensive clinical correlations, which may be performed in future investigations.

In conclusion, computerized HCC shape analysis is feasible, and the preliminary application showed that aggressive tumors have irregular morphologies; hence, quantitative shape descriptors can improve the diagnosis of HCC lesions chosen for biopsy had regular morphologic features that may have raised a lower degree of suspicion than more irregular tumors (i.e., in the non-biopsied cohort). Hence, it is plausible to surmise that gross tumor shape can influence the clinical suspicion of malignancy.

There are several limitations in our investigation. First, despite attempts to objectify the image analysis, our algorithm input is still dependent on sample points that were chosen manually. Second, one radiologist traced the tumor margins, limiting the ability to determine the effect of intra- and inter-observer bias. We attempted to reduce the potential inter-observer variability by using computerized linear interpolation to help standardize the tumor boundary coordinates. Third, undersampling a tumor boundary can distort its morphological parameters. We attempted to correct for this by selecting at least 13 points per lesion, particularly the smallest ones, while allowing up to 83 points for the largest lesions. Fourth, the extent of the tumor to the liver surface, vasculature, or other nonparenchymal tissue (e.g., gallbladder) may affect the tumor boundary through a tendency to assume the natural smoother contour of such an anatomic structure. Fifth, our algorithm focuses on external contour and ignores internal characteristics, such as hemorrhage, calcification, central scar, or gross fat, which may be features of different HCC pathological subtypes (34). Sixth, our two-dimensional shape analysis attempted to capture the representative contour of a three-dimensional (3D) object at its maximum transverse diameter. This method can become invalid for a tumor that is longer in the craniocaudal axis than in the anteroposterior axis, and morphologic analyses for multiple axial planes, or even 3D volumetry, may be necessary to accurately describe a HCC external surface. Seventh, the current study represents a descriptive investigation without extensive clinical correlations, which may be performed in future investigations.
of HCC and may potentially help predict disease prognosis for individual patients. Further research comparing HCC tumor shapes with benign liver lesions and correlating shape descriptors with tumor histology, therapeutic agent uptake, treatment response, and overall clinical outcome should be conducted to evaluate the efficacy and potential of applying morphologic analysis to HCC. The inclusion of morphologic imaging analysis has the potential to improve our understanding of the radiologic-pathologic correlations of HCC as well as the relevant imaging features of post-treatment imaging. We believe our shape analysis algorithm opens a new avenue for radiologists to accomplish this challenging task and moves imagers a step closer to the implementation of a CAD system for liver lesions.

Conflict of interest disclosure
The authors declared no conflicts of interest.

Appendix is available in the online version of this article at http://www.dirjournal.org/summary_en_doi.php?doi=10.4261/1305-3825. DIR.5973-12.1

References