Endovascular treatment of peripheral vascular lesions with stent-grafts

Baran Önal, Erhan T. Ilgıt, Şule Koşar, Koray Akkan, Terman Gümüş, Sergin Akpek

The concept of a transluminally placed endovascular graft was initially proposed by Dotter in 1969 (1). Subsequently, Balko et al. (2) reported the transfemoral placement of an intraluminal polyurethane-coated prosthesis in a sheep abdominal aortic aneurysm (AAA) model. The first report of the use of this technique in man was by Parodi et al. (3). They reported the treatment of AAAs by transfemoral intraluminal Dacron grafts, anchored by modified stainless steel stents. Since then, endovascular stent-graft placement has been increasingly used to treat vascular lesions, mainly AAAs. There are also a number of reports on AAA treatment of iatrogenic or traumatic vascular lesions, namely pseudoaneurysms, arteriovenous fistulas (AVFs), arterial ruptures, and perforations (4-7).

Materials and methods

Between February 1998 and July 2004, 17 patients (10 men, 7 women; age range, 21-85 years; mean age, 61 years) underwent repair of peripheral vascular lesions by means of endovascular stent-grafts. The study cases consisted of 10 cardiac catheterization-induced femoral arteriovenous fistulas (AVFs) located between the deep femoral artery and the femoral vein, one iatrogenic AVF between the common iliac artery and vein, two penetrating trauma-induced AVFs between the superficial femoral artery and vein, two penetrating trauma-induced pseudoaneurysms in the axillary and popliteal arteries, and three spontaneous or atherosclerosis-related iliac artery aneurysms. Balloon-expandable or self-expandable stent-grafts were used in all 17 cases.

RESULTS

All the stent-grafts were deployed successfully. In catheterization-induced femoral AVFs, complete closure of the fistulas was immediately accomplished in 9 of the 10 cases. Blood flow within the pseudoaneurysms of the axillary artery and the popliteal artery, and aneurysms of the iliac arteries were stopped. Partial closure was achieved in two patients with traumatic iliac and femoral AVFs. For the patients who reported subsided complaints, mean follow-up for 24 months with clinical examination and color Doppler ultrasound revealed patency of the stented segments.

CONCLUSION

Our results suggest that endovascular treatment of various types of peripheral vascular lesions with stent-grafts is a low-risk procedure, which appears to be less invasive than surgery.

Key words: • stents • aneurysm • pseudoaneurysm • arteriovenous fistula
AFM, GE Medical Systems, Milwaukee, WI, USA). In 16 cases, stent-graft deployment was performed via a retrograde femoral approach. In only one case with popliteal pseudoaneurysm, an antegrade femoral approach was preferred. In all cases with iatrogenic femoral AVFs, a flexible 7 Fr, 45-cm-long introducer sheath (Super Arrow-Flex, Arrow International, Reading, PA, USA) was placed across the aortic bifurcation to the contralateral side by the cross-over technique.

Iatrogenic femoral AVFs were a result of arterial puncture during coronary angiography (n=2) or percutaneous transluminal coronary angioplasty and coronary stenting (n=8). These patients were all on anticoagulation and antiplatelet regimens for their coronary artery disease. Symptomatic patients were immediately treated. In asymptomatic patients, ultrasonography guided compression for 20 minutes was attempted three times. Persistent patency of the AVF, despite ultrasonography guided compression, constituted our inclusion criterion in asymptomatic iatrogenic femoral AVF patients. Balloon-expandable stent-grafts, 12-28 mm in length and 4-9 mm expandable in diameter range, one for each lesion, were used. Stent-grafts were crimped manually onto a 5-6 Fr, 5-7 mm peripheral angioplasty balloon (Opta Pro, Cordis Europa, Roden, The Netherlands). The vessel diameter was automatically calculated with reference to the diagnostic catheter, which was used as the baseline for the stent-graft diameter. Roadmap and angiographic control were used for the exact placement of the stent-graft.

All patients were given a 5,000 IU heparin bolus, intra-arterially, during stent-graft placement. Adjunctive therapy after the procedure included low molecular weight heparin (Fraxiparine, Sanofi Pharma, Paris, France) for three days (two doses a day, 0.4 ml per dose, subcutaneously administered), 75 mg clopidogrel per day for one month, and 300 mg acetylsalicylic acid per day for life.

Table. Summary of cases

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age/Sex</th>
<th>Lesion type</th>
<th>Lesion location</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>67, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>70, M</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>61, M</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>72, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>65, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>70, M</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>63, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>69, F</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>62, M</td>
<td>AVF</td>
<td>DFA- FV</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>35, M</td>
<td>AVF</td>
<td>SFA/DFA-FV</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>38, M</td>
<td>AVF</td>
<td>CIA-V</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>21, F</td>
<td>PA</td>
<td>R axillary artery</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>85, M</td>
<td>PA</td>
<td>L popliteal artery</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>49, M</td>
<td>A/Plaque</td>
<td>R iliac artery</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>58, M</td>
<td>A</td>
<td>L iliac artery</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>74, M</td>
<td>A/Plaque</td>
<td>L iliac artery</td>
<td>8</td>
</tr>
</tbody>
</table>

The follow-up protocol included both clinical examination and color Doppler ultrasonography the day after the procedure, and at 1, 3, 6, 9, and 12 months, and then annually, unless the patient had any complaints. Intravenous or intraarterial digital subtraction angiography was performed in selected patients who had complaints or positive color Doppler ultrasonography findings. The follow-up period was 1-50 months (mean, 24 months).

Results
In all 17 cases, the stent-grafts were deployed successfully. In iatrogenic femoral fistulas, complete closure of the fistulas was immediately accomplished in 9 of the 10 cases (Figure 1). In one patient with leg edema, complete closure could not be achieved due to short stent-graft selection. Nonetheless, the fact that the complaint subsided was taken to indicate clinical success. Blood flow within the pseudoaneurysms of the axillary artery and the popliteal artery (Figure 2), aneurysm of the iliac artery, and aneurysms associated with atherosclerotic obstructive disease in the iliac arteries (Figure 3) ceased. In the patient with traumatic femoral AVF, the fistula tract between the superficial femoral artery and vein was totally eliminated. However, complete closure of the fistula could not be achieved due to multiple deep femoral artery feeders. As the major feeder of the fistula was eliminated, the leg edema of the patient became asymptomatic and the patient refused further treatment. In the patient with lumbar discectomy-induced iatrogenic AVF between the common iliac artery and vein, only partial closure could be achieved due to short stent-graft selection. Young age and high bifurcation of the internal iliac artery were the reasons for short stent-graft selection in this patient. As the complaints of the patient did not subside, the fistula was surgically eliminated later. This was the only case with insufficient closure of AVF in our patient population.

In patients with subsided complaints, the mean follow-up period was 24 months, which included both clinical examination and color Doppler ultrasonography. Color Doppler ultrasonography revealed patency of the stented segments. Luminal narrowing of not more than 30%, due to intimal hyperplasia, was observed in four of the cath-

![Figure 2](image-url)
eterization-induced AVFs and they had no symptoms in the follow-up period. In the patient with traumatic axillary pseudoaneurysm, prominent intimal hyperplasia was observed at 5 month follow-up, and PTA (percutaneous transluminal angioplasty) was applied to overcome the stenosis. The patient was asymptomatic, with smooth contours of the stented segment at intravenous digital substraction angiography at 50 month follow-up.

Discussion
The traditional treatment of peripheral arterial arterial aneurysms, pseudoaneurysms, AVFs, arterial ruptures, and perforations is surgical intervention. However, endovascular stent-graft placement is gaining popularity as a therapeutic alternative to open surgery (4-7). This procedure can be done under local anesthesia, is well tolerated by the patient, and is associated with a shorter hospitalization time than that of surgery. Surgical complications such as hemorrhage and infection, as well as the risk of general anesthesia, can be avoided in endovascular treatment. On the other hand, endovascular therapeutic approaches have their own complications such as stent occlusion, stent deformation and kinking, the loss of vessel branches after placement, and intimal hyperplasia (4, 6, 10, 11).

Careful observation and ultrasonography guided compression have been suggested as first line therapies in the management of post catheterization femoral AVFs because of their noninvasive nature (12-14). However, the fact that these patients are all on anti-coagulation and antiplatelet regimens for their coronary artery disease makes the spontaneous closure, or successful compression-obliteration of an iatrogenic AVF less likely (13-15). Post-catheterization femoral AVFs can originate from the common, superficial, or deep femoral arteries. Possible risk factors that increase the likelihood of post-cardiac catheterization AVF complications include distal puncture, older age, female gender, and periprocedural anticoagulation and antplatelet therapy. We believe that distal puncture was the main reason for the dominance of AVFs between the deep femoral artery and the superficial femoral vein in our group of patients. Reports related to pseudoaneurysms and AVFs after catheterization also show that these complications are highly associated with puncture sites below the level of the femoral head (13-15). The common femoral artery is in close proximity to the posteriorly located femoral head and the superior pubic ramus. Posterior support is provided by these bony structures during arterial compression in patients who had a common femoral artery puncture. However, the deep or superficial femoral artery lacks this bony support, and therefore hemostasis may be difficult to achieve during arterial compression after catheter removal, if the puncture site is distal to the common femoral artery. In cases of low arterial puncture, it is likely that the needle first enters a branch of the superficial femoral vein, which is located ventral to the deep femoral artery. Subsequent placement of the arterial sheath leads to creation of the AVF (16-18). We treated catheter-induced fistulas originating from the deep femoral artery. Complete closure of the fistulas was immediately accomplished in 9 of the 10 cases. In one case, complete closure could not be obtained, but due to the fact that the complaint subsided, it was considered a clinical success.

In the treatment of atherosclerotic disease in iliac arteries, some increasingly favor the use of stent-grafts, with reasonable one year primary patency rates of 91%-97% (19-21). This treatment, however, still remains questionable, since only limited data are available on the benefits of using stent-grafts to treat atherosclerotic disease. The follow-up results after PTA or stenting in iliac arteries are so favorable that the use of a stent-graft is unlikely to improve patency rates. This is also true for complex lesions, where bare stents have already proven their efficacy (22). However, metallic stents are usually appropriate for focal, predominantly stenotic arterial lesions and treatment of iliac aneurysms and AVFs with atherosclerotic plaques requires implantation of a stent-graft because of the need to reliably seal the entrance of the intramural channel. We successfully treated three patients with iliac aneurysms associated with atherosclerotic plaques.

The use of subclavian venous catheterization is the main reason for damage to the subclavian artery at the access site and the resulting pseudoaneurysm.
However, our case with subclavian artery pseudoaneurysm was due to penetration trauma. Until recently, the treatment of choice would have been surgical intervention, because of the non-compressible nature of the region and its close proximity to intrathoracic structures. There are now many reports of endovascular treatment of subclavian artery pseudoaneurysms in the literature (4, 23, 24). Endovascular treatment with stent-grafts in the femoropopliteal region has also been reported (11, 25).

Peripheral stent-grafts, either balloon-expandable or self-expanding, have their own advantages and disadvantages. Although balloon-expandable stent-grafts provide accurate sizing and localization, self-expanding stent-grafts are preferred as the first choice due to their flexibility and resistance to external forces in superficial locations like the groin. As we pointed out earlier, balloon-expandable stent-grafts are prone to collapse due to external forces. Substantial flexing may lead to an additional risk of compression or kinking. Using the shortest stent-graft possible is recommended to avoid these complications, as well as to reduce the risk of involuntary closure of the side branches (8, 26). We did not confront any collapse or kinking in the follow-up period in patients with iatrogenic femoral AVFs, although we used balloon-expandable stent-grafts, because the proximal deep femoral artery is far enough away from the hip joint and is sufficiently protected. Side branch occlusion, a potential consequence of implantation of a stent-graft in the deep femoral artery, was encountered in three of our patients, but remained clinically asymptomatic.

Although elective vascular lesions such as pseudoaneurysms and AVFs can be treated either with surgery or an endovascular approach, in emergency cases time is limited. Therefore, iatrogenic vascular injuries, such as perforations due to catheterization and interventional techniques, or traumatic injuries, should be treated by the interventional radiologist. This requires the availability of peripheral stent-grafts in the angiography units for urgent cases.

Stent-grafts could have disadvantages for younger patients with long life expectancy, since the long-term consequences of implanting stent-grafts are not known for certain. Therefore, young patients who are good candidates may warrant surgery rather than stent implantation, except in emergency cases.

In conclusion, our results suggest that endovascular treatment with stent-grafts is a low-risk procedure, which appears to be less invasive than surgery for the treatment of various types of peripheral vascular lesions.

References
20. Lammer J, Dane MD, Bleyen J, et al. Peripheral arterial obstruction: prospective study of treatment with a transumil-