Focal hypersteatosis: a pseudolesion in patients with liver steatosis

Nurgül Orhan Metin
Ali Devrim Karaosmanoğlu
Yavuz Metin
Muşturay Karçaaltıncaba

ABDOMINAL IMAGING
ORIGINAL ARTICLE

PURPOSE
We aimed to describe ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) findings of focal hypersteatosis (FHS).

METHODS
We retrospectively reviewed our database for patients with hypersteatosis. Over a 5-year period (February 2005 to September 2010) a total of 17,321 patients underwent abdominal CT scan and 28 patients were determined to have FHS. All patients had US, CT, and MRI studies. Size, area, and density measurements were performed on CT images. Fat signal percentage (FSP) was measured on T1-weighted in- and out-of-phase gradient-echo images. FHS was defined based on MRI findings, as an area of greater signal drop on out-of-phase images compared with the rest of the fatty liver.

RESULTS
The period prevalence of focal hypersteatosis was measured as 0.16% over the 5-year period. Cancer was the most common diagnosis (22 of 28 patients, 78.5%) and breast (32.1%) and colorectal (25%) cancers were predominating. FHS was seen in segment 4 (n=26, 92.8%), segment 8 (n=1, 3.6%), and segment 3 (n=1, 3.6%). Shape was nodular in 21 patients (75%), while triangular or amorphous in the remaining 7 patients (25%). FHS was hypodense on CT of all patients relative to fatty liver. On MRI, the FHS was hypointense on T1-weighted in-phase images in 17 patients (60.7%). Median liver parenchymal FSP was 21.5% (range, 10%–41.4%) and median FSP of hypersteatotic area was 32.5% (range, 19%–45%).

CONCLUSION
Focal hypersteatosis is a pseudolesion that can be observed in patients with liver steatosis. It appears hypodense on CT and mostly isoechoic on US relative to fatty liver. It may mimic metastasis in cancer patients with steatosis, due to nodular shape and atypical location. MRI should be used for correct diagnosis in patients with equivocal findings on CT to avoid biopsy.

EHEpatosteatosis is a very common radiologic finding. Global prevalence of nonalcoholic fatty liver disease is 25.24% (1). This finding was also confirmed in autopsy studies with a detection rate of nonalcoholic steatosis in 20%–30% of the cases (2). The detection of this condition is ever increasing due to the refinement in imaging modalities and the increased awareness of this finding by radiologists. The epidemic of obesity and increased insulin resistance, viral hepatitis, metabolic and hereditary disorders, and alcohol abuse should be counted among the most common underlying conditions. Although steatosis is generally a benign finding, subsequent hepatic parenchymal fibrosis and hepatic insufficiency may ensue in a subset of these patients (3). In addition to the aforementioned causes, oncologic patient population is also a growing contributor to this already large patient group. Several chemotherapeutic agents may cause significant steatosis due to their liver toxicity (4–6).

In contrast to diffuse steatosis, focal hepatic hypersteatosis (FHS) is much less known. By definition, FHS refers to a focal area of steatotic liver parenchyma in an already fatty liver (7, 8). These foci may simulate other benign and malignant liver lesions in patients. The correct
Focal hypersteatosis (FHS), which refers to more focal fat deposition within an already steatotic liver, is a pseudoleision that can be encountered more often in cancer patients receiving chemotherapy. Ultrasonography does not appear to be useful for detecting FHS. CT seems to be more successful in both detection and characterization, but it may fail to distinguish FHS from other hypodense focal liver lesions.

MRI examinations were performed with three different 1.5T MRI scanners (Siemens Symphony Magnetom, Philips Achieva, and GE Signa HDx) with the 4- and 8-channel phased array body coils. Acquisition parameters included T1-weighted gradient-echo in-phase and out-of-phase sequences (TE in-phase, 4.6 ms or 4.8 ms, out-of-phase, 2.3 ms or 2.4 ms; TR, 94–165 ms; flip angle [FA], 70°–80°; slice thickness, 8 mm; matrix, 256×256), T2-weighted HASTE sequence (TE, 80 ms; TR, 417 ms; FA, 90°; slice thickness, 6 mm; matrix, 256×256), T2-weighted fat-suppressed sequence (TE, 80–100 ms; TR, 415–8710 ms; FA, 90°–125°; slice thickness, 6–8 mm; matrix, 512×512). Contrast-enhanced dynamic 3D T1-weighted gradient-echo sequences were also performed after acquisition of the above sequences.

Image analysis of in-phase and out-of-phase MRI sequences

The signal intensity values of FHS foci were obtained by using an average of 0.5 cm² region-of-interest (ROI) for liver. As for spleen, 0.5 cm² and 1.5 cm² ROI circles were used for signal measurement. The ROI was drawn as large as possible for the measurement of liver and spleen parenchyma, excluding the vascular structures. For the signal intensity measurement of FHS in the liver, ROI drawings included the abnormal liver foci completely and excluded the adjacent liver parenchyma. The quantitative measurements were obtained from in- and out-of-phase images of the liver and spleen, using the above approach. Signal intensity indices (SII) were acquired by using the measurement technique defined for adrenal adenoma characterization in the imaging literature (12):

\[
\text{SII (FHS)} = \frac{\text{SI out-of-phase FHS} - \text{SI in-phase FHS}}{\text{SI in-phase FHS}} \times 100
\]

\[
\text{SII (liver)} = \frac{\text{SI out-of-phase liver} - \text{SI in-phase liver}}{\text{SI in-phase spleen}} \times 100
\]

\[
\text{SII (spleen)} = \frac{\text{SI out-of-phase spleen}}{\text{SI in-phase spleen}} \times 100
\]

Fat signal percentage (FSP) values in the background liver parenchyma and the FHS foci were calculated based on the following formula (12):

\[
\text{FSP} = \frac{\text{SI in-phase/spleen in-phase – liver out-of-phase/spleen out-of-phase}}{2(\text{SI liver in-phase/spleen in-phase})} \times 100
\]

Statistical analysis

Statistical analysis was performed using SPSS 15.0 (SPSS Inc.). The descriptive statistics were expressed as mean and standard deviation for continuous variables, median and range for continuous variables with non-normal distribution, frequency and percent for categorical variables. The Pearson correlation test was used for data analysis. A P value of less than 0.05 was considered statistically significant.

Main points

- Focal hypersteatosis (FHS), which refers to more focal fat deposition within an already steatotic liver, is a pseudoleision that can be encountered more often in cancer patients receiving chemotherapy.
- Ultrasonography does not appear to be useful for detecting FHS. CT seems to be more successful in both detection and characterization, but it may fail to distinguish FHS from other hypodense focal liver lesions.
- T1-weighted in- and out-of-phase MRI images are the most sensitive sequences for detection of FHS; signal drop on out-of-phase images can be used for correct diagnosis especially in cancer patients, to prevent further patient anxiety as well as unnecessary biopsies.
Results

A total of 28 patients were determined to have FHS, making the period prevalence of FHS 0.16% over a 5-year period. Six of these patients had no history of malignancy and the studies were performed for non-cancer-related reasons (elevated liver function tests, acute mesenteric ischemia, umbilical hernia, acute pancreatitis, hepatosteatosis, and vasculitis). None of the patients had a history or laboratory findings suggestive of any viral or congenital metabolic disorders affecting the liver. The remaining 22 patients had a history of malignancy (breast cancer (n=9, 32.1%), colon and rectal cancer (n=7, 25%), gastric cancer (n=2, 7.1%), non-Hodgkin lymphoma (n=1), renal cell cancer (n=1), endometrial sarcoma (n=1), neuroendocrine tumor of the pancreas (n=1), and ovarian cancer (n=1) (Table 1). One patient had concurrent breast and colon cancer. There was a history of chemotherapy use within 12 months of the imaging studies in 15 of 22 patients with malignancies, while the remaining 7 patients were all newly diagnosed cases scanned for initial staging and had not received any form of chemotherapy at the time of the imaging examinations (Table 1).

Laboratory parameters of these 28 patients were also evaluated. All laboratory tests were performed within one month of the imaging study. Mild elevation of aspartate aminotransferase (AST, range, 39–56 U/L; reference value, 8–33 U/L) and alanine aminotransferase (ALT) were detected in 6 and 4 patients, respectively (range, 42–71 U/L; reference value, 5–40 U/L). Two patients had no liver function tests (LFT) performed in our hospital. LFT results were within normal limits in the remaining 16 patients at the time of the imaging studies.

US examination was performed in all patients showing diffuse variable increase in the liver parenchyma suggestive of steatosis. FHS was detected in 5 patients (17.9%) and the common sonographic finding in these patients was the detection of a hyper-echoic foci (compared with the background liver parenchyma) (Fig. 1). In the remaining 23 cases (82.1%), the only sonographic finding was diffusely hypechoic liver parenchyma with no focal abnormality.

CT and MRI studies were available in all 28 patients. The FHS foci were detected on CT examinations and were later confirmed by subsequent MRI.

On CT imaging, the median hepatic and splenic parenchymal density values were found to be 77 HU (range, 3–116 HU), and 104 HU (range, 0–150 HU), respectively. The median value of FHS was 48 HU (range, 16–74 HU).

Based on the formula (Liver parenchymal density / Splenic parenchymal density) the median value was found to be 0.65 (range, 0.05–0.75). By using the formula (Liver parenchymal density – Splenic parenchymal density), the median attenuation difference between the liver and splenic parenchyma was on average -24 HU (range, -21 to -67

Table 1. Demographic and clinical characteristics of study population and the chemotherapeutic agents

<table>
<thead>
<tr>
<th>Patients</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>6/22</td>
</tr>
<tr>
<td>Age (years), mean±SD</td>
<td>52.3±9.6</td>
</tr>
<tr>
<td>Cancer related</td>
<td>22</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>9</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>7</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>2</td>
</tr>
<tr>
<td>Other malignancies</td>
<td>5</td>
</tr>
<tr>
<td>Noncancer related</td>
<td>6</td>
</tr>
<tr>
<td>Chemotherapeutic agents</td>
<td>Vinorelbine, docetaxel, clodronate, ietrozo, trastuzumab, capectitabine paclitaxel, dexamethasone sodium phosphate, gemcitabine, cisplatin</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>5-FU, leucovorin oxaliplatin, cisplatin, docetaxel, bevacizumab, irinotecan</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>5-FU, leucovorin, cisplatin, docetaxel</td>
</tr>
<tr>
<td>Other malignancies</td>
<td>Methotrexate, cytarabine, ifosfamide, mesna, etoposide</td>
</tr>
<tr>
<td>M, male; F, female; FU, fluorouracil.</td>
<td></td>
</tr>
</tbody>
</table>
HU). Both of these values in patients who had CT studies support the presence of steatosis on CT in the portal venous phase at 70 s after contrast injection.

The average size of the detected FHS on both CT and MRI studies was 1.8 cm² (range, 0.5–6.0 cm²) with an average diameter of 1.6 cm (range, 0.8–2.5 cm) (Fig. 2).

The most common location of FHS was segment 4 (n=26, 92.8%); in the remaining 2 patients FSH foci were located in segment 8 (n=1, 3.5%) and segment 3 (n=1, 3.5%) (Fig. 3). The FHS foci detected in segment 4 were located next to the falciform ligament in 17 patients (60.7%), anterior to the portal vein in 7 patients (25%); different locations in segment 4 were detected in 2 patients (7.1%). The shape of the FHS foci was nodular in 21 patients (75%), triangular or amorphous in the remaining 7 patients.

On T1-weighted in- and out-of-phase images, the median liver parenchymal FSP was 21.5% (range, 10%–41.4%), while the median FSP of the hypersteatotic area was found to be 32.5% (range, 19%–45%) (Table 2).

On in-phase T1-weighted images, FHS foci were found to be hyperintense compared with the adjacent liver parenchyma in 17 patients (60.7%) (Fig. 4), while isointense and not discernible in the remaining cases (39.3%). In these patients, the FSP values were found to be higher than the adjacent liver parenchyma.

In the retrospective evaluation of non-fat-suppressed T2-weighted images, the FHS foci were hyperintense compared with adjacent liver parenchyma in 18 patients (64.3%) (Fig. 5a). In the remaining 10 cases (35.7%), these foci could not be detected, as they were isointense.

On fat-suppressed T2-weighted images, the FHS foci could not be detected as a separate abnormal lesion in any of the patients except for one, in whom the FHS was detected as a focal hypointense parenchymal area (Fig. 5b).

Follow-up imaging studies were available in 14 of 28 patients (between 6 and 24 months). The FHS foci were stable with no interval change in size or configuration in 8 patients.

Figure 3. a–c. Distribution of FHS in segment 4 of the liver. Most common location is adjacent to falciform ligament (a), followed by anterior location to the portal vein (b). FHS is also seen in segment 3 (c). Note nodular, amorphous and triangular shape of the pseudolesions.

Figure 4. a–c. A 41-year-old female with a history of breast cancer. Axial T1-weighted in-phase gradient-echo image shows slightly hyperintense FHS in segment 4 adjacent to porta hepatis (a). T1-weighted out-of-phase gradient-echo sequence (b) shows signal drop in the same area. Graph (c) shows fat signal percentage of patients with hyperintense and isointense FHS on T1-weighted in-phase sequence.

Figure 5. a, b. Axial T2-weighted non-fat-saturated fast spin-echo image (a) shows hyperintense FHS area (arrow) in a 66-year-old male with a history of steatosis. Axial T2-weighted fat-saturated fast spin-echo image (b) shows hypersteatosis as a focal hypointense parenchymal lesion (arrow) anterior to portal vein in a 44-year-old female with history of breast cancer.

![Image](image-url)
patients (57.1%), while they completely disappeared in 4 cases (28.6%). In the remaining 2 cases (14.3%), the lesions appeared to be smaller and were hardly discernible compared with adjacent liver parenchyma.

Discussion

Hepatic steatosis and focal fat deposition are well-known clinical entities. In addition to patients with insulin resistance, obesity, alcohol abuse, and several hereditary/metabolic diseases, history of chemotherapy use in cancer patients is also an important contributing factor to this already large pool of patients. Liver steatosis has been reported to occur in 47% of patients with known colorectal cancer, who received systemic chemotherapy (4). This chemotherapy effect is more pronounced in patients who received folinic acid, fluorouracil, and 5-fluorouracil (5-FU) as a part of their regimen (13–15). As all of the above agents were commonly used in our patients’ chemotherapy regimens, we also think that they significantly contributed to the findings in our patient cohort. Overall, 25% of the subjects had a history of colorectal cancer in our group, and they all received systemic 5-FU and fluorouracil as part of their treatment. Tamoxifen, a medication widely used in the treatment of breast cancer, was also implicated as a causative agent for hepatic steatosis. Tamoxifen was reported to stimulate increased fat deposition within the visceral adipose tissue, as well as the liver (5). A strong relationship between breast cancer and development of fatty liver, treated with chemotherapy regimens with or without tamoxifen, was also reported (6). We also detected a similar relationship in our patient cohort, in which 9 patients (32.1%) had a diagnosis of breast cancer.

Focal fat deposition is a relatively common clinical situation in patients undergoing chemotherapy. The underlying pathophysiology is poorly understood and most of the proposed potentially explanatory theories are mostly speculative. Vascular theory is the most commonly proposed mechanism (16). Vascular supply of the liver other than the hepatic artery and the portal vein is believed to be the underlying mechanism for focal areas of abnormal focal fatty deposition or sparing (17, 18). Aberrant and normal veins that enter the liver independently from the portal vein may have communications with the intrahepatic portal branches; a situation which may give rise to focal perfusional changes and subsequent metabolic alterations within the liver parenchyma (18). Parabiliary venous system drains the pancreatic head which may result in higher concentrations of insulin delivery which, in turn, may induce metabolic changes within the liver parenchyma (17). This argument was supported by focal fatty change beneath the capsule in patients receiving intraperitoneal insulin during peritoneal dialysis (19). The change in the oxygen tension secondary to atypical perfusion should be counted among the potential contributors (20, 21).

The term FHS, which refers to more focal fat deposition within an already steatotic liver, may be inadequate to define this phenomenon. This focal fat deposition, as stated above, may also cause diagnostic confusion in an already steatotic liver parenchyma. In contrast to diffuse or heterogeneous parenchymal fatty infiltration of liver, FHS is a relatively less known clinical entity. FHS, as a separate clinical entity, is relatively newly defined and much less is known about this phenomenon (7, 8).

In our patient cohort, we detected FHS more often in patients receiving chemotherapy. As hepatic steatosis is a common associating phenomenon in patients receiving chemotherapy, this finding is not completely unanticipated.

The relationship between liver function and steatosis was investigated very thoroughly in the medical literature. AST and ALT are the most frequently used laboratory parameters in the investigation of liver function and both were reported as not elevated in the great majority of the patients who received tamoxifen and subsequently developed steatosis (22). We also did not see any abnormalities in the liver function tests of the majority (61.6%) of the FHS cases, which was consistent with the subsequent reports in the literature.

In healthy subjects the fat percentage of the liver parenchyma is less than 5% (10, 23–26). In all our patients, there was abnormally high fat accumulation in the liver: the median fat signal percentage in the liver was 21.5%, consistent with steatosis, while the median fat signal percentage in FHS foci was found to be 32.5%.

The common location of FHS in our cohort was found to be the liver parenchyma adjacent to the falciform ligament (64.2%) followed by the area anterior to the

Table 2. Imaging appearances of fat-saturated focal hypersteatosis on different imaging modalities and FSP measurements

<table>
<thead>
<tr>
<th>Modality</th>
<th>Patient number</th>
<th>FSP(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoechoic</td>
<td>5</td>
<td>37.6</td>
</tr>
<tr>
<td>Hyperechoic</td>
<td>23</td>
<td>31.8</td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypodense</td>
<td>28</td>
<td>32.6</td>
</tr>
<tr>
<td>T1 in-phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isointense</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>Hyperintense</td>
<td>17</td>
<td>36.8</td>
</tr>
<tr>
<td>T2-HASTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isointense</td>
<td>10</td>
<td>27.1</td>
</tr>
<tr>
<td>Hyperintense</td>
<td>18</td>
<td>36.5</td>
</tr>
<tr>
<td>T2-FS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isointense</td>
<td>16</td>
<td>32.6</td>
</tr>
<tr>
<td>Hypointense</td>
<td>1</td>
<td>43</td>
</tr>
</tbody>
</table>

FSP, fat signal percentage; US, ultrasonography; CT, computed tomography; T2, T2-weighted; HASTE, half-Fourier acquisition single-shot turbo spin-echo; FS, fat-saturated.
main portal vein (28.5%). These two areas are also the most common location of focal fatty deposit, based on the literature findings (10, 21) and, therefore, the diagnosis of FHS might be relatively more straightforward when seen in these locations. Despite this relative easiness of diagnosis in these locations, when FHS is located in atypical liver areas including segment 8 and segment 3, correct diagnosis may be difficult or, even, impossible. It should be borne in mind that, even when located in these typical locations, metastatic disease should also be considered in the differential diagnosis in patients with known history of malignant disease. Also hypersteatosis can develop on follow-up CT studies as a new lesion, which can be confusing.

Regarding the most reliable imaging modality for diagnosis of FHS, MRI appears to be the reference standard, because it is the only modality that can diagnose hypersteatosis as there is no other lesion demonstrating greater signal drop on T1-weighted out-of-phase images compared with background fatty liver. US could only detect FHS in only 5 of 28 patients in our study, which is not surprising, given the well-known fact that steatosis may significantly limit focal lesion detection in the diffusely steatotic liver parenchyma.

CT images demonstrated FHS foci as hypodense areas in the already steatotic liver parenchyma. Despite the fact that CT appears to be somewhat successful in detecting FHS, it was not helpful in characterizing the lesions as FHS may mimic other benign/malignant focal liver lesions that can appear similarly hypodense on CT. T1-weighted in- and out-of-phase MRI images emerged as the most sensitive sequences for the detection of FHS. FHS could be detected in all our patients using the out-of-phase gradient-echo sequence. Non-fat saturated T2-weighted images also appear to be helpful for detecting the FHS as moderately hyperintense foci. Although non-fat-suppressed T2-weighted images could detect these foci in some patients, it was not possible to characterize them, as metastatic foci also appear as moderately bright on T2-weighted images. Fat-suppressed T2-weighted images could not detect FHS in any of our cases which prompts us to suggest that this sequence is useful in neither detection nor characterization of FHS. Although it was not available in our patients, diffusion-weighted imaging can also be helpful in ruling out metastasis in these patients.

Our study also provided some insight regarding the long-term biologic behavior of FHS. Some patients showed complete resolution of these lesions on long-term follow-up, which is an important clue to the dynamic internal metabolic nature of FHS.

From a morphologic standpoint, most of the lesions in our cohort were nodular. This feature is even more confusing for imaging specialists as most liver metastases also appear as round-shaped, nodular/spheric lesions. Although most FHS foci appear as nodular, it should be noted that some lesions appear as poorly defined, irregularly shaped, abnormal parenchymal focal lesions.

Our study has several limitations. As this is a retrospective study, our patient group is heterogeneous, comprising patients who have a history of malignancy and several other patients, who do not have cancer history. Another limitation is the lack of histopathologic diagnosis in all of our patients. However, the typical imaging features on in- and out-of-phase images obviated the need for any invasive procedure, given the 100% specificity of MRI finding of signal drop on T1-weighted out-of-phase images compared with in-phase images. Another limitation is the lack of unenhanced images in our CT group. It is well demonstrated in the literature that unenhanced CT images are more sensitive for detecting steatosis (23, 24), but use of portal venous phase images was reported in the literature (10, 25–28). Moreover steatosis was defined mainly by MRI as the reference standard (29–31).

In conclusion, FSH is a pseudoleusion that can be encountered in patients with steatosis, and MRI is the problem solving method. T1-weighted in- and out-of-phase sequence images should be used for the diagnosis. The common sites of FHS may provide a diagnostic clue; however, a diagnosis of FHS should not be made based on US and CT features as metastatic disease in these locations, albeit rare, may occur. We think that familiarity with the imaging findings of FHS is crucial, especially in cancer patients, to prevent further patient anxiety as well as unnecessary interventions.

Conflict of interest disclosure

The authors declared no conflicts of interest.

References

