Discrepant lesion size estimated on T1- and fat-suppressed T2-weighted MRI: diagnostic value for differentiation between inflammatory pseudotumor and carcinoma of the nasopharynx

Hye Na Jung
Hyung-Jin Kim
Yi Kyung Kim
Mina Song
Ha Yeon Kim
Kyung Min Park
Jihoon Cha
Sung Tae Kim

PURPOSE
Nasopharyngeal inflammatory pseudotumor (NIPT) is hard to differentiate from infiltrating nasopharyngeal carcinoma (NPC) on conventional magnetic resonance imaging (MRI). The purpose of this study is to determine whether discrepant lesion sizes estimated on T1- and fat-suppressed T2-weighted images can help distinguish between NIPT and NPC.

METHODS
We retrospectively reviewed MRI data of histologically proven 14 NIPTs and 18 infiltrating NPCs. We measured the area of the lesion on contrast-enhanced T1-weighted, unenhanced T1-weighted, and fat-suppressed T2-weighted images by placing the largest possible polygonal region-of-interest within the lesion at the same level. Using lesion size measured on contrast-enhanced T1-weighted image as the reference, we calculated and compared area ratio of T1 (AR$_{T1}$) and area ratio of T2 (AR$_{T2}$) between NIPTs and NPCs. For validation, we also undertook a double-blinded study by two reviewers and assessed the diagnostic performance and interobserver agreement.

RESULTS
For NIPTs, AR$_{T2}$ (median, 0.48; range, 0.18–0.97) was statistically significantly less than AR$_{T1}$ (median, 1.01; range, 0.80–1.99), while these values were not significantly different for NPCs. The interobserver agreement in differentiating between NIPT and NPC was good, with a sensitivity of 93% and a specificity of 83%–94%.

CONCLUSION
In contrast to NPCs, NIPTs appear smaller on fat-suppressed T2-weighted images than on T1-weighted images. This discrepancy in the lesion size estimated on T1-weighted and fat-suppressed T2-weighted images may provide a simple and consistent way to differentiate between NIPTs and NPCs on conventional MRI.
ed images. The fat saturation technique, which is routinely used for the T2-weighted images of the modern head and neck MRI, may exaggerate this discrepancy for NIPTs, because the intervening fat involved by the infiltrative lesion can simulate normal adipose tissue whose signal becomes suppressed with fat saturation. If our hypothesis proves to be correct, it might be used as an easy method to discriminate NIPT from NPC. The purpose of this study was to validate our hypothesis to provide a simple and consistent way to differentiate between NIPTs and NPCs on conventional MRI.

Methods

Patients

This study was approved by our institutional review board, and informed consent was waived according to the requirements of a retrospective study.

From January 1997 to December 2014, a search of the electronic medical records and pathology registry of our hospital revealed 21 patients with newly histologically proven NIPT. Although all patients were documented to have undergone MRI studies, seven patients were excluded because of loss of essential MRI data from MRI studies, seven patients were excluded were documented to have undergone a search of the electronic medical records and pathology registry of our hospital between January 2010 and December 2014. We selected these NPC patients, because all patients with NIPT included in the present study demonstrated involvement of the infratemporal fossa on MRI.

Magnetic resonance imaging

MRI examinations were performed on a 1.5 T or 3.0 T scanner using a head or neurovascular coil. In all patients, unenhanced T1-weighted spin-echo images (TR, 400–560 ms; TE, 10–14 ms; NEX, 2) and T2-weighted fast spin-echo images with fat-suppression (TR, 2500–4500 ms; TE, 80–110 ms; NEX, 1) were obtained, followed by intravenous injection of 0.1 mmol/kg of gadolinium-based contrast material and contrast-enhanced T1-weighted spin-echo images with fat saturation. In all sequences, images were obtained in the axial plane with 3–4 mm section thickness and 0.3–1 mm intersection gap. In addition, images in the sagittal and/or coronal planes were also obtained in most patients.

Image analysis

All MRI data were retrospectively evaluated by two neuroradiologists in consensus, both examiners having experiences with head and neck imaging for 27 years and 7 years, respectively.

For the sake of completeness, we evaluated the MRI data for the general features of NIPTs and NPCs, such as the extent, signal intensity, pattern, and enhancement degree of the lesions, although it was not the main subject of this study. As for the extent, we recorded if the lesion involved the skull base and intracranial cavity in addition to the nasopharynx and infratemporal fossa. We compared the signal intensity of the lesions with that of the brain stem on the infratemporal fossa (T4 stage according to TNM staging system approved by the American Joint Committee on Cancer (16)) from the registry of the Departments of Radiology and Otolaryngology of our hospital between January 2010 and December 2014. To validate the diagnostic performance of our hypothesis, two radiologists (six and five years of experience in neuroradiology, respectively) independently reviewed the MRI data of the same patients enrolled in the present study. Reviewers were unblinded to the clinical indication for MRI, that is, they were aware that the pathology of the lesion was either NIPT or NPC. Otherwise, they were blinded to any other clinical data including the final diagnosis of the individual lesion. Before readings, both reviewers were carefully instructed in the background of the present study and also in our hypothesis that NIPTs would be seen smaller on the lesion size than the sinonasal mucosa, moderate; similar to or greater than the sinonasal mucosa, marked.

For measurement of the apparent size of the lesion on images with different pulse sequences, we first obtained A_{CET1} (area of the lesion on contrast-enhanced T1-weighted images) by placing the largest possible manually-drawn polygonal region-of-interest within the lesion on the axial contrast-enhanced T1-weighted image where the area of the lesion involving the infratemporal fossa looked biggest. The infiltrating portions of the lesion at the infratemporal fossa that showed abnormal enhancement were included in the region-of-interest with care to minimize partial volume averaging effect (Figs. 1 and 2). Likewise, for the acquisition of A_{CET2} (area of the lesion on unenhanced T1-weighted images) and A_{LS} (area of the lesion on fat-suppressed T2-weighted images), we repeated the process of region-of-interest placement on the axial unenhanced T1-weighted and fat-suppressed T2-weighted images at the same slice as that on the contrast-enhanced T1-weighted images (Figs. 1 and 2).

The means and standard deviations of metric data were calculated for A_{CET1}, A_{CET2}, and A_{LS}. Based on these measurements, we calculated $AR_{T1} = A_{CET1} / A_{CT}$ and $AR_{T2} = A_{CET2} / A_{CET1}$.

We chose contrast-enhanced T1-weighted imaging as the reference pulse sequence, because NIPTs usually looked biggest and most conspicuous on this sequence, compared with unenhanced T1-weighted and fat-suppressed T2-weighted imaging.

Validation of diagnostic performance and interobserver agreement

To validate the diagnostic performance of our hypothesis, two radiologists (six and five years of experience in neuroradiology, respectively) independently reviewed the MRI data of the same patients enrolled in the present study. Reviewers were unblinded to the clinical indication for MRI, that is, they were aware that the pathology of the lesion was either NIPT or NPC. Otherwise, they were blinded to any other clinical data including the final diagnosis of the individual lesion. Before readings, both reviewers were carefully instructed in the background of the present study and also in our hypothesis that NIPTs would be seen smaller on fat-suppressed T2-weighted images than greater than the muscle but less than the sinonasal mucosa, moderate; similar to or greater than the sinonasal mucosa, marked.
Table 1. General MRI features of NIPT and NPC

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Extent</th>
<th>Signal intensity</th>
<th>Pattern of enhancement</th>
<th>Degree of enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SB</td>
<td>IC</td>
<td>T1WI</td>
<td>T2WI</td>
</tr>
<tr>
<td>NIPT (n=14)</td>
<td>12</td>
<td>8</td>
<td>Iso, 14</td>
<td>1</td>
</tr>
<tr>
<td>NPC (n=18)</td>
<td>8</td>
<td>10</td>
<td>Iso, 18</td>
<td>7</td>
</tr>
</tbody>
</table>

ª: All lesions involved both nasopharynx and infratemporal fossa.
ªª: Signal intensity of the lesion was compared with that of the brain stem.
ªªª: Degree of enhancement of the lesion was determined in comparison with the adjacent muscle.
MRI, magnetic resonance imaging; NIPT, nasopharyngeal inflammatory pseudotumor; NPC, nasopharyngeal carcinoma; SB, skull base; IC, intracranial cavity; T1WI, T1-weighted image; T2WI, T2-weighted image.

Table 2. Summary of measurements

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Mean±SD (cm²)</th>
<th>Median (range)</th>
<th>P *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A₁ertia, A₁, A₂</td>
<td>A₁, A₂</td>
<td></td>
</tr>
<tr>
<td>NIPT (n=14)</td>
<td>6.62±3.92</td>
<td>6.97±3.69</td>
<td><0.001</td>
</tr>
<tr>
<td>NPC (n=18)</td>
<td>10.85±4.97</td>
<td>10.62±4.97</td>
<td></td>
</tr>
</tbody>
</table>

ª: P value represents AR₁, AR₂ for NIPT and NPC.
ªª: P value represents NIPT vs. NPC for AR₁, AR₂.
SD, standard deviation; A₁ertia, area of the lesion on contrast-enhanced T1-weighted images; A₁, area of the lesion on unenhanced T1-weighted images; A₂, area on fat-suppressed T2-weighted images; AR₁, area ratio of T1; AR₂, area ratio of T2; NIPT, nasopharyngeal inflammatory pseudotumor; NPC, nasopharyngeal carcinoma.

Results

The general features of NIPTs and NPCs on conventional MRI are summarized in Table 1. The results of the measurements are summarized in Table 2. In 14 patients with NIPT, the median value of AR₁ was 0.48 (range, 0.18–0.97), which was significantly lower than that of AR₂ (median, 1.01; range, 0.80–1.99) (P < 0.001) (Fig. 1). In contrast, no significant difference was found between AR₁ and AR₂ in 18 patients with NPC (P = 0.08) (Fig. 2). While AR₁ of NIPT was not statistically different from that of NPC (P = 0.149), AR₂ of NIPT was significantly lower than that of NPC (P < 0.001).

Using AR₁ for the prediction of NIPTs, the mean area under the receiver operating characteristics curve was 0.933 (95% confidence interval, 0.79–0.99). With 0.69 AR₂ as the cutoff value for differentiating NIPTs from NPCs, we calculated the sensitivity, specificity, PPV, NPV, and accuracy for each reviewer, with the lesions allotted to a confidence level 1 and 2 being considered as NIPT. Interobserver agreement between the two reviewers was also evaluated by calculating κ statistics. The k value was categorized in the following way: κ = 0.00–0.20, poor agreement; κ = 0.21–0.40, fair agreement; κ = 0.41–0.60, moderate agreement; κ = 0.61–0.80, good agreement; κ = 0.81–1.00, excellent agreement.

All statistical analyses except for receiver operating characteristics were performed using commercially available software (SPSS, version 22.0.0; IBM Corp.).
their visual inspection, interpretations of reviewer 1 had 93% (13/14) sensitivity, 94% (17/18) specificity, 93% (13/14) PPV, 94% (17/18) NPV, 94% (30/32) accuracy; interpretations of reviewer 2 had 93% (13/14) sensitivity, 83% (15/18) specificity, 81% (13/16) PPV, 93% (15/16) NPV, and 88% (28/32) accuracy. There were one false negative case (Fig. 3) and one false positive case (Fig. 4) in reviewer 1, and one false negative case and three false positive cases in reviewer 2. The two cases misinterpreted by reviewer 1 were also misinterpreted by reviewer 2. The interobserver agreement for differentiation between NIPT and NPC was good with a κ value of 0.75.

Discussion

IPT is an idiopathic, quasi-neoplastic disease and can manifest as a single mass or multiple masses. It is characterized histologically by polymorphous infiltration of both acute and chronic inflammatory cells, including lymphocytes, plasma cells, histiocytes, and eosinophils with variable amounts of fibrosis, granulomatous reaction, necrosis, and myofibroblastic spindle cells (1, 2, 3).
Since its first observation in the lung in 1939, many different terms have been coined to describe IPT, such as inflammatory myofibroblastic tumor, plasma cell granuloma, inflammatory myofibrohistiocytic proliferation, inflammatory fibrosarcoma, xanthoma, xanthogranuloma, fibroxanthoma, histiocytoma, xanthomatous pseudotumor, plasmocytoma, and solitary mast cell granuloma, indicating the complex and diverse nature of this entity (1). Although the lung and the orbit are two most common sites involved by IPT, the disease can occur in nearly every site of the body (1, 18).

The imaging findings of IPT are nonspecific and variable depending on the anatomic locations and pathologic composition of the lesions. Pulmonary IPT typically presents as a solitary, peripheral, well-demarcated lobulated mass with a predilection for the lower lobes (22) and shows intermediate signal intensity on T1-weighted images and high signal intensity on T2-weighted images (23). On the other hand, orbital IPT can be localized or diffuse and shows hypointense signal intensity on both T1- and T2-weighted images (24–27). Recent systematic reviews on IPTs of the sinonasal cavity and skull base reported that compared with gray matter, the majority of the lesions demonstrated isointensity on T1-weighted images and hypointensity on T2-weighted images along with confluent and homogeneous contrast enhancement (28, 29).

Although rare, NIPT has similar MRI findings (2, 3, 5). In their study of seven patients with NIPT, Lu et al. (2) reported that an infiltrative nature, minimal-to-mild mass effect, low signal intensity on T2-weighted images, and moderate homogeneous contrast enhancement were the characteristic MRI findings of NIPT.
that were useful for differential diagnosis of NPC. Our study also revealed similar findings in most patients with NIPT. Lu et al. (2) also reported that intact mucosa of nasopharynx, extensive pachymeningeal involvement, encircling and narrowing of internal carotid artery and a relative lack of associated cervical lymphadenopathy were additional MRI findings in favor of NIPT. Of the MRI features, hypointensity on T2-weighted images is known as the most important clue to the diagnosis of IPT (2, 3, 9). This hypointensity on T2-weighted images is attributed pathologically to a relative paucity of free water as well as mobile protons in fibrotic tissues.

The results of the present study support our hypothesis that hypointensity of NIPT causes less lesion conspicuity and underestimation of the lesion size on fat-suppressed T2-weighted images, while this does not happen in cases of NPC. As expected, not only the internal low signal intensity but also the infiltrative growth pattern frequently obscured the boundary of the lesion, resulting in a decreased AR\textsubscript{T2} in NIPT compared with NPC. We validated our hypothesis by the use of the receiver operating characteristics analysis and scatterplots as well as in a double-blinded study by two reviewers. With the cutoff value of 0.69 AR\textsubscript{T2}, we achieved a sensitivity of 86% and a specificity of 94%. The validation study by two reviewers based on visual inspection also revealed a sensitivity of 93% and a specificity of 83%–94%. Although there were exceptions of false negative and false positive cases, the present study shows that recognition of discrepant lesion size on T1- and fat-suppressed T2-weighted images can afford a simple but consistent way to differentiate between NIPTs and NPCs.

Our study has several limitations. First, it is retrospective in nature and thus might have an inherent selection bias. Second, this study included only a limited number of patients with NIPT. Third, the placement of the region-of-interests on magnetic resonance images might not be exact, because the boundary of the lesion was not certain in some cases. However, the results of the blinded qualitative validation study, which were similar to the results of the quantitative study, indicate that this may not matter in most cases. Fourth, there is lack of correlation between pathologic specimens and images. Intra-tumor microcalcification, hemorrhage, or other T2* change such as macrophage and free radical of NIPT may be related to relative low signal intensity on T2-weighted images.

In conclusion, in contrast to NPCs, NIPTs appear smaller on fat-suppressed T2-weighted images than on T1-weighted images. This discrepancy in the lesion size estimated on T1- and fat-suppressed T2-weighted images may be useful to differentiate between NIPTs and NPCs.

Conflict of interest disclosure
The authors declared no conflicts of interest.
References