Three-dimensional rotational angiography is preferable to conventional two-dimensional techniques for uterine artery embolization

Atul Gupta, Kirsten Zuurmond, Thijs Grünhagen, Geert Maleux

PURPOSE
We aimed to investigate the potential benefits of three-dimensional rotational angiography (3DRA) compared to two-dimensional (2D) roadmapping to visualize the uterine artery (UA) origins during uterine artery embolization (UAE) procedures.

MATERIALS AND METHODS
Sixty-three UAE cases performed under 3DRA guidance were reviewed retrospectively to determine if there was an optimal angiographic projection angle for identifying UA origin. Digital subtraction angiogram (DAS)-like images of the pelvic vessels were generated from the 3DRA scans at six different angles: left anterior oblique (LAO) 25°, 35°, 45°; and right anterior oblique (RAO) 25°, 35°, 45°. Two experienced interventional radiologists assessed if these angles could effectively serve as a roadmap to guide catheterization of the UA. Assessment was validated against original 3DRA scans to determine the percentage of true and false positives.

RESULTS
No single projection angle was found that could consistently be utilized for UA catheterization. The projection angles used during 3D roadmapping for both the left and right UA showed two clusters with both a wide spread: RAO 20° to 50° and LAO 20° to 50°. More than 50% of the DSA-like images at RAO and LAO 45° appeared to be adequate for UA catheterization, but validation against the 3DRA revealed 28% of these images were suboptimal and deceptive, due to unappreciated overlapping vessels.

CONCLUSION
No standard projection angles can be recommended with 2D roadmapping to consistently visualize UA origin. The 3DRA can be as a useful tool for UAE to achieve reliable and consistent visibility of the UA origin.

Three-dimensional rotational angiography (3DRA) has been introduced to overcome limitations of two-dimensional (2D) imaging, such as vessel foreshortening and vessel obscuration due to overlying vessels or bone. Three-dimensional (3D) volumes such as 3DRA and magnetic resonance (MR) angiography can show most branches of the internal iliac artery in addition to their point of origin (14–16). Therefore, 3DRA can be used as a mapping tool of the pelvic arterial tree for UAE. Three-dimensional rotational angiography (3DRA) has been introduced to overcome limitations of two-dimensional (2D) imaging, such as vessel foreshortening and vessel obscuration due to overlying vessels or bone. Three-dimensional (3D) volumes such as 3DRA and magnetic resonance (MR) angiography can show most branches of the internal iliac artery in addition to their point of origin (14–16). Therefore, 3DRA can be used as a mapping tool of the pelvic arterial tree for UAE.

Thus far, studies that used 3DRA scans (17) and MR angiography scans (15, 18) to determine the best position of the C-arm for catheterization of the UA revealed no single angulation that could be recommended for standard angiography. A limitation of the prior study using 3DRA scans was the low number of patients studied (n=8). Nevertheless, these studies show a wide spread when examining the preference in angiographic projection angles using 3D volumes. However, for each case, there might be multiple projection angles that could provide a good roadmap. Therefore, it may be important to analyze multiple projections from each 3DRA scan to assess whether one of these angles would suffice for most cases. Several factors might influence the angulation and rotation of the C-arm for the best view of the origin of the UA, such as vessel foreshortening and vessel obscuration due to overlying vessels or bone.
as the anatomy of branching patterns of the internal iliac artery. Knowledge of the potential anatomical variants is important for those performing UAE.

The purpose of this study was to evaluate the use of 3DRA compared to 2D angiographic projection angles in correctly visualizing the origin of the UA for subsequent UAE, in the largest analysis to date.

Materials and methods

Patients

We retrospectively gathered the data from 63 patients treated with UAE using 3D roadmapping. Ethical committee approval was given for both centers participating in this trial (Paoli Hospital, Paoli, Pennsylvania, USA and University Hospital Gasthuisberg, Leuven, Belgium). Indicators for UAE were postpartum hemorrhage (n=2), placenta percreta (n=1), ectopic pregnancy (n=1), and vascular malformation (n=2). The remaining patients were treated for uterine leiomyomas (n=57).

Acquisition of 3D scans

All procedures were carried out on a Philips Allura Xper FD20 system (Philips Healthcare, Best, The Netherlands). The 3DRA was performed as part of routine clinical practice at both institutions. During the rotational acquisition, nonionic iodinated contrast material (Center 1: Optiray™, Mallinckrodt Inc., Hazelwood, Missouri, USA) was injected into the vascular territory of interest. In Center 1 (30 patients), an aorta injection was performed and a total of 120 frames were acquired during a 240° rotation with the C-arm in the propeller position. In Center 2, (33 patients), a selective injection of both internal iliac arteries was used, and a total of 120 frames were obtained over a 180° rotation with the C-arm in the roll position. The images were automatically sent to a dedicated workstation, and a 3D volume was reconstructed within seconds of the acquisition.

Definition of working projections

Following assessment of the reconstructed 3D volume, suitable working projections for catheterization of the UAs were selected and stored in the workstation. The working projections are expressed as degrees of angulation (caudal-cranial movement of the C-arm) and rotation (left anterior oblique [LAO] and right anterior oblique [RAO] view). During the intervention, the stored working projections were recalled, and the C-arm was automatically steered to the corresponding angles. The 3DRA volume was then overlaid on live fluoroscopy to serve as a 3D-roadmap for catheterization of the UA.

We then retrospectively examined the stored working projections of our patient cohort to investigate if there were similar projection angles that were routinely used to view the origin of the UA. The image quality of the 3DRA results was graded by the interventional radiologists to examine whether these were sufficient to visualize the origin of the UA for subsequent roadmapping. A grading scale of 1–4 (poor, fair, good, and excellent, respectively) was used to define the image quality.

Comparison to DSA-like images

Following grading, DSA-like images (using maximum intensity projection [MIP]) were generated from the 3DRA scans at RAO 25°, 35°, and 45°; LAO 25°, 35°, and 45° with the cranial-caudal angulation set at zero. These six projections were chosen since they are the typical projections used in routine clinical practice for 2D roadmapping. Two interventional radiologists, one from Center 1 (A.G.) and one from Center 2 (G.M.) (10 and 16 years of experience, respectively) blindly assessed the image quality of the total set of DSA-like images and evaluated whether they could effectively serve as a roadmap for catheterization of the UA. The DSA-like images were scored by the interventional radiologists in a binary manner as either “useful” or “not useful” for roadmapping. Those that were graded “useful” were then validated against the original 3DRA scans to determine true positives and false positives due to foreshortening or vessel overlapping. The interobserver agreement on the scoring of these DSA-like images was calculated and is reported in Cohen’s kappa statistics. The kappa coefficient gives a quantitative measure of the magnitude of agreement between observers.

Additionally, we quantified the distribution of anatomic variation in UA origin to confirm that this study included a broad distribution of patients, using the classification system established by Gomez-Jorge et al. (19).

Results

All 3DRAs acquired for the study were rated by both interventional radiologists to be of sufficient quality for identification of the UA origin and therefore useful as a roadmap. All 3DRA scans were of sufficient diagnostic quality for further analysis. The 3DRA image quality was graded good or excellent in 90.3% of the cases and fair in 9.7%. None of the cases was graded poor. There was no difference in grading between selective or aortic injection.

The angulations and rotations of the C-arm used during 3D roadmapping are plotted in Fig. 1. For both the left and right UA, two clusters are observed. Both clusters show a wide spread in projection angles between RAO 20° and 50°, and between LAO 20° and 50°. The caudal-cranial range was smaller with angulations, between Cran10 and Caud10.

The DSA-like images that were constructed from the 3DRA volumes were rated to be of sufficient quality for identification of the UA. The assessment of the DSA-like roadmap images was validated against the original 3DRA scans to determine true positives and false positives due to foreshortening or vessel overlapping (Fig. 2). The percentages of true and false positives for the six considered viewing angles are depicted in Fig. 3. More than 50% of the DSA-like images at RAO 45° and LAO 45° appeared to be adequate for UA catheterization. However, when validated against the 3DRA, false positives were identified due to unappreciated overlapping vessels. The number of false positives with respect to the total number of positive images indicates that, on average, in 28% of the cases the physician would be relying on an incorrect angle (Table 1). A fair overall interob-
server agreement on the scoring of the DSA-like images was found with a kappa value of 0.376 (range, 0.18–0.54).

The classification of all reviewed UAs into the distinct anatomic subtypes is given in Table 2. The most common branching for both the left and right UA is Type I, where the UA is the first branch of the inferior gluteal artery.

Discussion

This study investigated the benefits of using 3DRA over the use of standard angiographic projection angles for visualization of the origin of the UA in UAE procedures. Additionally, it assessed the variation in anatomy of the UA.

The set of viewing angles selected from a 3DRA for subsequent roadmapping reveal two clusters of preferred angles, however each with a wide spread (Fig. 1). This indicates that there are no standard preferred projection angles, but instead that multiple projection angles might suffice as roadmap. These results corroborate the findings of previous smaller studies. Bucek et al. (17) analyzed the angulations used with 3D roadmap on eight patients with a wide spread from LAO 45° to RAO 90° for the right UA, and LAO 81° to RAO 78° for left UA. Naguib et al. (18) used MR angiography to predict the best projection angle to visualize the origin of the UA in 20 patients. The best projection angles of the origin of the left UA varied between LAO 45° and RAO 45°, and the angulations for the right UA were determined to be between LAO 50° and RAO 50°.

Relying on a “standard” projection of LAO 45° or RAO 45° appears to clearly identify the UA origin on a 2D roadmap over 50% of the time, but actually is inadequate (often due to nonperceived overlapping vessels) more than 20% of the time (Fig. 3). The danger of using a false positive angle, where the origin of the UA is not located as expected from the DSA image, is that the interventionist could potentially spend a significant amount of time searching for the origin of the UA in an incorrect location (Fig. 2). This would result in added procedure time, elevated radiation dose, and potentially increased iodinated contrast usage.

The 3DRA volume allows the operator to select the optimal viewing angle to catheterize the UA, which might circumvent the need for multiple DSA runs to find the origin of the UA. It may therefore be expected that the use of 3DRA can contribute to lowering radiation exposure and contrast injections. Patient studies in neuroradiology have shown that the use of 3DRA for 3D roadmapping and pretreatment selection of optimal working projections can lead to radiation dose reduction for cases requiring multiple oblique 2D DSA runs (20–22). Similarly, a recent multicenter comparison has shown that the use of 3DRA for carotid artery treatment involves a cumulative radiation dose three times lower than that for procedures based on 2D angiography only, mainly due to quicker selection of working projections and consequent reduction in fluoroscopy time and number of 2D DSA series (23).
usefulness of DSA-like images for roadmapping showed a fair average kappa value, which indicates that even two experienced interventional radiologists judge the usefulness of 2D images for roadmapping for UAE differently. It demonstrates the potential of 3DRA as a valuable tool to ensure an optimal visualization of the origin of the UA for all interventionists. Furthermore, interventionists with less experience in performing the treatment will always be able to find a suitable viewing angle with 3DRA, therefore also reducing the total amount of dose (13).

The anatomy of the UA can be categorized by the location of the origin of the artery. Our study showed a trend similar to the study from Kanasaki et al. (24), with Type I as the most common (62.1%) anatomical variant. Pelage et al. (25) looked into the division of the internal iliac artery, and their results corroborate our findings, with Type I and Type II origins noted in 77% of their cases, and 79% in ours. Interestingly, while in our study trifurcation origins (Type III) were noted in 14% of the patients, Gomez-Jorge et al. (19) reported 43% Type III. Their study identified the UA with the use of 2D images, which might have given a false indication of the origin of the UA due to vessel overlap, potentially resulting in a higher number of Type III classifications.

This study carries some limitations. First, the DSA-like images are not dynamic images like real DSA runs, in which vessel overlap might be better observed compared to static images. On the other hand, modern angiographic systems typically also use nondynamic imaging to create a 2D roadmap by stacking all the images obtained during the roadmap acquisition. If one did have the advantage of being able to view a dynamic image during the roadmap run, this could potentially give a lower percentage of false positive roadmaps.

In addition, the choice of the six studied viewing angles might be a limitation, as different angles, including cranio-caudal angulation, might be used by some physicians as a first choice when performing UA catheterization. The direction (medial, lateral, or anterior) that the UA originates might influence the optimal position of the C-arm to visualize the origin of the UA. Worthington-Kirsch (26) examined the origin of the UAs for 25 consecutive cases and the findings showed that there is no standard direction that the UA branches off from the internal iliac artery. Angulation of the C-arm in cranial-caudal direction may therefore be advantageous to find

![Figure 3. Percentage of cases in which the angiographic viewing angles were scored useful (positive) for roadmapping to catheterize the left and right uterine artery. The positively scored cases are divided into true and false positives. More than 50% of the 2D roadmap-like images at right anterior oblique angle of 45° and left anterior oblique angle of 45° appeared to be adequate for uterine artery catheterization. However, when validated against the 3D rotational angiography, false positives were identified due to unappreciated overlapping vessels. LAO, left anterior oblique; RAO, right anterior oblique; UA, uterine artery.](image-url)

Table 1. Percentage of cases in which the angiographic viewing angles were scored useful (i.e., positive) for roadmapping to catheterize the left and right uterine artery; divided into true positives and false positives

<table>
<thead>
<tr>
<th></th>
<th>Left UA (n=61)</th>
<th>Right UA (n=61)</th>
<th>Total (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP angles</td>
<td>35.1%</td>
<td>31.1%</td>
<td>33.1%</td>
</tr>
<tr>
<td>FP angles</td>
<td>11.6%</td>
<td>14.5%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Total positive angles (TP+FP)</td>
<td>46.7%</td>
<td>45.6%</td>
<td>46.1%</td>
</tr>
<tr>
<td>Deceptive angles (FP/Total positives)</td>
<td>24.8%</td>
<td>31.8%</td>
<td>28.2%</td>
</tr>
</tbody>
</table>

The percentages given are averages of the six considered viewing angles for each UA. From the false positives, the percentage of deceptive angles was calculated. On average in 28% of the cases physicians would rely on the wrong roadmap.

FP, false positive; TP, true positive; UA, uterine artery.

Table 2. Anatomical classification of 122 uterine arteries reviewed

<table>
<thead>
<tr>
<th>UA classification*</th>
<th>Left UA (n=61)</th>
<th>Right UA (n=61)</th>
<th>Total (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>67.2%</td>
<td>55.7%</td>
<td>61.5%</td>
</tr>
<tr>
<td>Type II</td>
<td>19.7%</td>
<td>16.4%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Type III</td>
<td>4.9%</td>
<td>23.0%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Type IV</td>
<td>6.6%</td>
<td>4.9%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>1.6%</td>
<td>0.0%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

*Type I, the uterine artery as first branch of the inferior gluteal artery; Type II, the uterine artery as second or third branch of the inferior gluteal artery; Type III, the uterine artery, the inferior gluteal and the superior gluteal arteries arising as a trifurcation; Type IV, the uterine artery as first branch of the hypogastric artery (22). UA, uterine artery.
a good view to visualize the origin of the UA.

In this study, we focused on the variation in rotation of the C-arm for a good view on the origin of the UA. Our results suggest that 3DRA carries advantages over acquiring 2D DSA acquisitions from multiple viewing angles to find the origin of the UA, thereby potentially reducing radiation exposure. However, an extensive study with comparison of the dose and contrast for 2D and 3D roadmapping for UAE is required to further investigate this potential. In addition to 3DRA, MR angiography also provides insight into the complex pelvic vascular anatomy. With modern image fusion techniques, an MR angiography volume superimposed upon live fluoroscopy can be used for roadmapping during the interventional procedure, which may lead to even lower radiation dose and contrast usage. Navigation during UAE, facilitated by MR angiography roadmapping, is the subject of a future study.

In conclusion, our study shows that there are no standard projection angles to visualize the origin of the UA. Our results indicate that 3DRA is a valuable alternative to multiple 2D acquisitions and could reduce total patient radiation dose and contrast load. It can give the physician better insight into the origin of the UA, which is instrumental in prompt catheterization during UAE.

Conflict of interest disclosure
The authors declared no conflicts of interest.

References