Prone transradial catheterization for combined single-session endovascular and percutaneous interventions: approach, technical success, safety, and outcomes in 15 patients

Rajiv N. Srinivasa
Jeffrey Forris Beecham Chick
Joseph J. Gemmete
Bill S. Majdalany
Anthony Hage
Alex Jo
Ravi N. Srinivasa

Supine transradial access (TRA) was first described as a novel approach for performing coronary arteriography (1). Since its inception, a myriad of noncoronary applications for TRA have emerged allowing for shortened patient recovery times, decreased hospital costs, and improved patient satisfaction (2, 3). Additionally, multiple randomized prospective studies have demonstrated the benefits of TRA as an alternative to transfemoral access in reducing access-site related complications (4–6).

Supine TRA has been utilized for chemoembolization, radioembolization, uterine artery embolization, aortoiliac and peripheral arterial interventions as well as other renal and visceral interventions (7–11). The efficacy and safety of supine TRA has been well established in large patient populations and across a wide range of vascular interventions with a high rate of technical success and safety (11, 12). However, these prior reports only describe TRA with standard supine patient positioning. This standard technique is limited in that it does not allow the operator to perform combined procedures requiring simultaneous arterial intervention and supine percutaneous access.

Oncologic interventions such as transarterial embolization with concomitant percutaneous ablation for retroperitoneal and pelvic tumors may require both arterial access and percutaneous access from a posterior-approach.

PURPOSE
We aimed to report approach, safety, technical success, and clinical outcomes of prone transradial access (PTRA) and demonstrate feasibility for procedures requiring simultaneous arterial intervention and prone percutaneous access.

METHODS
Fifteen patients underwent PTRA, seven females (47%) and eight males (53%), mean age of 55 years (range, 19–78 years). All patients underwent PTRA for combined transarterial and posterior-approach percutaneous interventions. Variables included sheath size (French, F), type of anesthesia, arterial intervention technical success, posterior-approach percutaneous intervention technical success, estimated blood loss (mL), fluoroscopy and procedure time, complications, and follow-up.

RESULTS
Mean sheath size was 4 F (range, 4–6 F; SD = 0.5). Arterial interventions included transarterial embolization of renal (n=6), hepatic (n=2), and pelvic vessels (n=2), diagnostic arteriography (n=4), and embolization of an arteriovenous malformation (n=1). Posterior-approach intervention technical success was 100% (15/15). PTRA technical success was 100% (15/15). Posterior-approach percutaneous interventions included retroperitoneal (n=5) and pelvic (n=1) mass biopsies, nephrostomy tube placement (n=2), cryoablation of pelvic (n=2) and renal (n=1) masses, sclerotherapy of arteriovenous malformations (n=2), foreign body removal from the renal collecting system (n=2), ablation of a renal tumor (n=1), intracavitary injection of pulmonary mycetoma (n=1), and ablation and cementoplasty of a vertebral body tumor (n=1). The biopsies were diagnostic (6/6). There were no minor or major access-site complications.

CONCLUSION
PTRA is a safe and feasible method for performing combined arterial and posterior approach percutaneous interventions without the need for repositioning.
posterior percutaneous-approach access. In such cases, repositioning the patient mid-procedure from supine to prone or vice versa is cumbersome and time consuming and may place the patient at greater risk for procedural complications. Prone transradial access (PTRA) with combined posterior-approach percutaneous ablation has been previously described for these instances (13).

The purpose of this study is to describe the approach, technical success, and safety of PTRA in combination with a variety of posterior-approach interventions. This technique facilitates complex single-session endovascular and percutaneous procedures without the need for repositioning.

Methods

Patient identification

Institutional review board approval (HUM00120582) was obtained and this retrospective study complied with the Health Insurance Portability and Accountability Act. Informed consent was obtained from all patients. All patients undergoing PTRA for combined endovascular and percutaneous posterior-approach interventions (n=15) were identified via retrospective review of the electronic medical record (EPIC; Epic Systems Corporation) in conjunction with the department’s prospectively maintained database (Microsoft Access 2017). Three (21%) patients were included in a prior report describing the prone transradial technique for simultaneous embolization and cryoablation of solid neoplasms (13).

Patient demographics

Patients included 15 individuals, eight males (53%) and seven females (47%), with a mean age of 55 years (range, 19–78 years). All patients underwent PTRA for combined endovascular and percutaneous interventions.

PTRA technique

TRA access and PTRA have been previously described (13, 14). All patients were evaluated by an attending interventional radiologist in the hospital, emergency department, or clinic before the procedure. All procedures were performed using monitored anesthesia care or general anesthesia administered by an attending anesthesiologist. PTRA procedures were performed by one of four attending interventional radiologists with 2 years, 6 years (n=2), and 20 years of experience.

Before all procedures, a Barbeau test was performed on the left wrist to confirm that redundant arterial supply was present. Patients with Barbeau A, B, or C physiology were deemed safe to proceed with PTRA, while patients with Barbeau D physiology were deemed unsafe for PTRA (14, 15). Topical lidocaine (Fougera Pharmaceuticals) and nitroglycerin ointment (Fougera Pharmaceuticals) were then applied to the skin over the radial artery 30 minutes prior to the start of the procedure. The patients were brought to the angiography suite and placed in prone position with the left arm abducted 25° and the hand in a supine position. Under ultrasound-guidance, subcutaneous nitroglycerin 100 µg (American Regent) and 2% lidocaine 9 mL (Baxter) were injected into the tissues surrounding the radial artery. The radial artery was then accessed using a 21-gauge micro-puncture needle (Cook Medical) through which a 0.018-inch guidewire was placed. A 4 F transitional dilator (Cook Medical) was then placed and the wire was exchanged for a 0.035-inch J-wire and a 4 F, 5 F, or 6 F Glidesheath slender (Terumo Interventional Systems) sheath was inserted into the artery. A cocktail consisting of nitroglycerin 200 µg (American Regent), heparin 3000 units (APP Pharmaceuticals), and verapamil 2.5 mg (Hospira) was then injected through the side port of the sheath after hemodilution to a total volume of 20 mL.

All procedures utilizing PTRA were performed in a hybrid angiography suite using an Artis Zee interventional angiography system (Siemens Medical), SOMATOM Definition AS computed tomography (CT) (Siemens Medical), and when needed EPIQ ultrasound (Philips Medical).

At the conclusion of each procedure, the PTRA sheath was removed and a TR band (Terumo Interventional Systems) was placed over the access site in the left wrist. The TR band was inflated with 18 mL of air initially and slowly deflated to ensure patient hemostasis with preservation of a waveform on pulse oximetry. After 20 minutes, 2 mL of air was removed, followed by 2 mL of air every 10 minutes until the band was completely deflated.

Variables, definitions, and outcomes

Barbeau physiology, sheath size, anesthesia type, percutaneous posterior-approach intervention technical success, PTRA technical success, type of percutaneous posterior-approach intervention, type of arterial intervention, contrast volume, estimated blood loss volume, fluoroscopy and procedure time, and complications were recorded.

PTRA technical success was defined as insertion of the transradial sheath into the artery with the patient in prone position. Arterial technical success was defined as either successful embolization of the targeted artery or completion arteriography of the desired vessel. Percutaneous posterior-approach intervention technical success was defined as successful completion of the posterior-approach intervention. Contrast volume was recorded in milliliters. Estimated blood loss was recorded in milliliters. Procedure time was recorded in minutes. Complications were classified based on the Society of Interventional Radiology (SIR) quality improvement guidelines for the reporting and archiving of interventional radiology procedures (16, 17). Follow-up was recorded in days.

Statistical analysis

Descriptive statistics were provided as means, standard deviations (SD), percentiles, and ranges. The analyses were conducted using SPSS Version 24 (IBM Corporation).

Results

A total of 15 cases utilizing PTRA were performed. Of the patients, 13 (87%) had Barbeau A physiology and 2 (13%) had Barbeau B physiology. Mean sheath size was

---

Main points

- Prone transradial access is feasible due to the ability to rotate the forearm at the elbow, allowing for easy access to the radial artery in the prone position.
- Procedures that must be performed in the prone position, such as nephrostomy tubes, and percutaneous ablation procedures can be performed along with arteriography simultaneously without repositioning the patient.
- Treatment of posteriorly located arteriovenous malformations can be facilitated by allowing simultaneous percutaneous and transarterial approaches.
4±0.5 F (range, 4–6 F). Of the procedures, 11 (73%) were performed under general endotracheal anesthesia and 4 (27%) under monitored anesthesia care. All (100%) posterior approach interventions and all (100%) PTRA interventions were technically successful.

Patient demographics, type of arterial and posterior-approach interventions are shown in the Table. Fig. 1 illustrates PTRA and some of the possible posterior-approach percutaneous interventions that may be performed. Arterial interventions performed in the 15 patients included transarterial embolization (TAE) of a renal cell carcinoma (n=3), renal arteriogram (n=2), transarterial chemoembolization (TACE) of hepatocellular carcinoma (n=2) (Figs. 2 and 3), TAE of a renal angiomyolipoma (n=1), lower extremity arteriogram (n=1), TAE of presacral sarcomatoid carcinoma (n=1), TAE of pelvic malignant peripheral nerve sheath tumor (n=1), TAE of a pelvic arteriovenous malformation (n=1), intercostal artery arteriogram (n=1), lumbar artery arteriogram (n=1), and iliac artery arteriogram (n=1) (Fig. 4). Posterior-approach percutaneous interventions performed in the 15 patients included biopsy of a renal mass (n=3), biopsy of an adrenal mass (n=1) (Fig. 3), biopsy and cryoablation of a renal mass (n=1), microwave ablation of a renal mass (n=1), sclerotherapy of a venous malformation in the calf (n=1), foreign body retrieval of coils from the renal collecting system followed by placement of a nephro-ureteral stent (n=1), cryoablation of a presacral sarcomatoid carcinoma with concomitant percutaneous nephrostomy placement (n=1), cryoablation of a pelvic malignant peripheral nerve sheath tumor (n=1), bilateral nephrostomy placement (n=1), CT-guided intracavitary injection of an antifungal agent into a lower lobe mycetoma (n=1), radiofrequency ablation (RFA) and cemen-

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)/ Gender</th>
<th>Arterial intervention</th>
<th>Posterior percutaneous intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35/F</td>
<td>Transarterial embolization of renal angiomyolipoma</td>
<td>Renal mass biopsy</td>
</tr>
<tr>
<td>2</td>
<td>66/M</td>
<td>Transarterial chemoembolization of hepatocellular carcinoma</td>
<td>Adrenal mass biopsy</td>
</tr>
<tr>
<td>3</td>
<td>78/M</td>
<td>Renal cell carcinoma embolization</td>
<td>Cryoablation of renal mass, and contralateral renal mass biopsy</td>
</tr>
<tr>
<td>4</td>
<td>37/F</td>
<td>Lower extremity arteriogram</td>
<td>Sclerotherapy of calf venous malformation</td>
</tr>
<tr>
<td>5</td>
<td>65/M</td>
<td>Renal arteriogram</td>
<td>Nephroscopic foreign body retrieval of coils eroded into renal collecting system and nephro-ureteral stent placement</td>
</tr>
<tr>
<td>6</td>
<td>75/M</td>
<td>Transarterial embolization of presacral sarcomatoid carcinoma</td>
<td>Cryoablation of presacral sarcomatoid carcinoma and percutaneous nephrostomy placement</td>
</tr>
<tr>
<td>7</td>
<td>45/F</td>
<td>Transarterial embolization of pelvic malignant peripheral nerve sheath tumor</td>
<td>Cryoablation of pelvic malignant peripheral nerve sheath tumor</td>
</tr>
<tr>
<td>8</td>
<td>62/M</td>
<td>Embolization of pelvic arteriovenous malformation</td>
<td>Bilateral percutaneous nephrostomy placement</td>
</tr>
<tr>
<td>9</td>
<td>54/F</td>
<td>Intercostal arteriogram</td>
<td>Intracavitary antifungal injection of lower lobe mycetoma</td>
</tr>
<tr>
<td>10</td>
<td>47/F</td>
<td>Lumbar arteriogram</td>
<td>Radiofrequency ablation and cementoplasty of L4 cystic lesion</td>
</tr>
<tr>
<td>11</td>
<td>19/M</td>
<td>Iliac arteriogram</td>
<td>Sclerotherapy of pelvic arteriovenous malformation</td>
</tr>
<tr>
<td>12</td>
<td>55/F</td>
<td>Renal arteriogram and embolization</td>
<td>Nephroscopic foreign body retrieval of coils eroded into renal collecting system</td>
</tr>
<tr>
<td>13</td>
<td>65/F</td>
<td>Transarterial chemoembolization of hepatocellular carcinoma</td>
<td>Pelvic mass biopsy</td>
</tr>
<tr>
<td>14</td>
<td>56/M</td>
<td>Transarterial embolization of renal mass</td>
<td>Renal mass biopsy</td>
</tr>
<tr>
<td>15</td>
<td>66/M</td>
<td>Transarterial embolization of renal mass</td>
<td>Renal mass biopsy and microwave ablation</td>
</tr>
</tbody>
</table>

F, female; M, male.

Figure 1. Schematic illustration of prone transradial access technique. Since the forearm is flexible at the elbow, access into the radial artery is relatively simple even in the prone position. Arteriography can be performed in conjunction with other procedures requiring prone positioning including but not limited to nephrostomy tube placement, percutaneous nephroscopy, vertebral cementoplasty, pelvic mass biopsy, and pelvic mass cryoablation.
toplasty of a vertebral body lesion (n=1), percutaneous access of a pelvic sidewall arteriovenous malformation and embolization (n=1) (Fig. 4), foreign body retrieval of coils from the renal collecting system (n=1), and ultrasound-guided pelvic mass biopsy (n=1) (Fig. 2).

Arterial intervention technical success was 100% (15/15). Posterior-approach intervention technical success was 100% (15/15). The biopsies that were performed were diagnostic (100%, 6/6) and showed renal angiomyolipoma in patient 1, adrenal adenoma in patient 2, renal cell carcinoma in patient 3, solitary fibrous tumor in patient 13, and renal cell carcinoma in patient 14.

Mean contrast volume was 87±65.9 mL (range, 10–275 mL). Mean estimated blood loss was 34±74.8 mL (range, 1–300 mL). Mean procedure time was 167±62 min (range, 61–301 min). Mean fluoroscopy time was 29±16.4 min (range, 6–71 min). Mean follow-up was 169 days (range, 38–356 days).

There were no minor or major complications directly related to PTRA (16). Patient 2 (TACE and adrenal mass biopsy) developed spontaneous bacterial peritonitis requiring antibiotic therapy. Patient 4 (lower extremity arteriography and percutaneous sclerotherapy) reported significant calf pain one week following the procedure which was relieved with nonsteroidal antiinflammatory medication. Patient 5 (renal arteriogram and nephroscopic foreign body removal) developed fever and leukocytosis one day after foreign body retrieval and required antibiotic therapy. Patient 6 (TAE and cryoablation of sarcomatoid carcinoma) developed sepsis requiring intensive care unit admission one day following the procedure. Patient 9 (intercostal arteriogram and antifungal injection into a mycetoma) developed a small expanding postprocedural pneumothorax requiring chest tube placement. Patient 10 (lumbar arteriogram and RFA and cementoplasty of an L4 cystic lesion) had persistent back pain following the procedure. Lastly, patient 12 (renal arteriogram and nephroscopic foreign body removal) developed arterial extravasation following coil removal from the renal collecting system and required glue embolization of a lower pole segmental renal arterial branch.

Figure 2. a–f. A 65-year-old female with history of hepatocellular carcinoma and an indeterminate right pelvic mass. Axial CT image (a) through the liver demonstrates a hypervascular mass in the right hepatic lobe (arrow). Axial CT image (b) through the pelvis demonstrates a solid and calcified mass within the right pelvis (arrow) of indeterminate etiology. There was question whether this represented a fibrous tumor versus a vascular malformation. Prone transradial arteriography (c) demonstrates no evidence for arterial supply to the mass. Delayed imaging also demonstrated no venous filling to suggest a venous malformation. Fluoroscopic image (d) demonstrates a biopsy needle entering from a US-guided posterior percutaneous approach (arrow). A wire is seen within the artery as well (arrowhead). Subselective hepatic arteriography (e, f) in the prone position reveals the hypervascular mass within the liver (arrows) prior to chemoembolization.
Discussion

This study describes the utility of PTRA in performing procedures requiring single-session endovascular and percutaneous access from a posterior approach. TRA has been previously shown to be advantageous in shortening patient recovery times, reducing hospital costs, decreasing access site complications, and improving patient satisfaction (2, 3). Utilizing prone patient positioning may allow the operator to perform complex and innovative procedures to treat patients without the need for mid-procedure patient repositioning.

Prone patient positioning may be required for percutaneous genitourinary, retroperitoneal, pelvic, spine, and lung interventions as well as in the treatment of posteriorly located arteriovenous malformations. The combination of transarterial embolization with radiofrequency ablation has been shown to be successful using the PTRA approach with posterior percutaneous access to directly target the lesion (13). In such cases, if supine transradial or transfemoral access were used for endovascular intervention, the patient would need mid-procedure repositioning and re-preparation for subsequent percutaneous intervention. This could result in prolonged procedure time and potentially increase the risk for intraprocedural complications. Popliteal artery access is an alternative for simultaneous transarterial and posterior percutaneous approach interventions, but theoretically may have more access site complications.

In the present study, several cases of combined embolization and cryoablation of renal cell carcinoma and pelvic tumors were performed using PTRA. Additionally, prone patient positioning allowed for chemoembolization of hepatocellular carcinomas as well as biopsy of renal and other retroperitoneal or pelvic masses prior to ablative therapies. Similar access was also used to treat complex arteriovenous malformations from a prone approach. In all such cases patients reported improvement in clinical symptoms following treatment without any access-site related complications.

Two cases of foreign body retrieval from the renal collecting system were performed with prone patient positioning. In both cases embolization coils placed for arterial pseudoaneurysms had eroded from the vessel into the collecting system. In order to safely remove these, PTRA was obtained to maintain control of the previously embolized vessel in the event of hemorrhage resulting from nephroscopic removal of the coils. In one patient, PTRA proved critically necessary as glue embolization of the vessel was required after percutaneous removal of the coils due to arterial extravasation.

There are several limitations to this study. The study was performed at a single institution and included only 15 patients. PTRA was performed for a variety of procedures and without comparison to supine TRA. All cases were performed in a hybrid angiography suite offering simultaneous fluoroscopic and...
computed tomography capability which may limit the ability to replicate such procedures at all institutions.

In conclusion, PTRA is a technically feasible and safe method for performing combined endovascular and percutaneous interventions from a posterior-approach without the need for repositioning.

Conflict of interest disclosure
The authors declared no conflicts of interest.

References


20. Peng ZW, Chen MS. Transcatheter arterial chemoembolization combined with radiofrequency ablation for the treatment of hepatocellular carcinoma. Oncology 2013; 84 (Suppl 1):40–43. [CrossRef]