Neuroradiology - Original Article

Learning of serial digits leads to frontal activation in functional MR imaging

  • Hakkı Muammer Karakaş
  • Sirel Karakaş

Received Date: 02.09.2005 Accepted Date: 18.11.2005 Diagn Interv Radiol 2006;12(1):9-13

PURPOSE

Clinical studies have shown that performance on the serial digit learning test (SDLT) is dependent upon the mesial temporal lobes, which are responsible for learning and its consolidation. However, an effective SDLT performance is also dependent upon sequencing, temporal ordering, and the utilization of mnemonic strategies. All of these processes are among the functions of the frontal lobes; in spite of this, the relationship between SDLT performance and the frontal lobes has not been demonstrated with previously used mapping techniques. The aim of this study was to investigate the areas of the brain that are activated by SDLT performance.

MATERIALS AND METHODS

Ten healthy, right handed volunteers (mean age, 20.1 years; SD: 3.3) who had 12 years of education were studied with a 1.0 T MR imaging scanner. BOLD (blood oxygen level dependent) contrast and a modified SDLT were used. Activated loci were automatically mapped using a proportional grid.

RESULTS

In learning, the most consistent activation was observed in B-a-7 of the right (80%) and the left hemispheres (50%). In recall, the most consistent activation was observed in B-a-7 of the right hemisphere (60%). Activations were observed in 2.5±0.97 Talairach volumes in learning, whereas they encompassed 1.7±0.95 volumes in recall. The difference between both phases (learning and recall) regarding total activated volume was significant (p<0.05).

CONCLUSION

The prefrontal activation during SDLT performance was not related to learning or to recall, but to a function that is common to both of these cognitive processes. A candidate for this common factor may be the executive functions, which also include serial position processing and temporal ordering.