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PURPOSE
This study aimed to investigate the effect of using a deep neural network (DNN) in breast cancer 
(BC) detection.

METHODS
In this retrospective study, a DNN-based model was constructed from a total of 880 mammograms 
that 220 patients underwent between April and June 2020. The mammograms were reviewed by 
two senior and two junior radiologists with and without the aid of the DNN model. The perfor-
mance of the network was assessed by comparing the area under the curve (AUC) and receiver 
operating characteristic curves for the detection of four features of malignancy (masses, calcifica-
tions, asymmetries, and architectural distortions), with and without the aid of the DNN model and 
by the senior and junior radiologists. Additionally, the effect of utilizing the DNN on diagnosis time 
for both the senior and junior radiologists was evaluated. 

RESULTS
The AUCs of the model for the detection of mass and calcification were 0.877 and 0.937, respective-
ly. In the senior radiologist group, the AUC values for evaluation of mass, calcification, and asym-
metric compaction were significantly higher with the DNN model than those obtained without the 
model. Similar effects were observed in the junior radiologist group, but the increase in the AUC 
values was even more dramatic. The median mammogram assessment time of the junior and senior 
radiologists was 572 (357–951) s, and 273.5 (129–469) s, respectively, with the DNN model, and the 
corresponding assessment time without the model, was 739 (445–1003) s and 321 (195–491) s, 
respectively. 

CONCLUSION
The DNN model exhibited high accuracy in detecting the four named features of BC and effectively 
shortened the review time by both senior and junior radiologists.
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Breast cancer (BC) is the most common cancer and the second leading cause of cancer 
deaths in women worldwide,1 but there is a large difference in the survival rate of BC 
patients who live in different countries. In particular, the five-year survival rate of BC pa-

tients in China is much lower than that in developed countries, such as the United States.2 One 
of the main reasons for this discrepancy is the low early diagnosis rate in China.3 Therefore, the 
accurate and early diagnosis of BC is critical for early treatment options and for reducing BC 
mortality in China. 

Mammography is the most effective screening method for BC and has been shown to in-
crease the detection rate and reduce the mortality rate of BC.4-6 Mammography images can 
clearly show the tissues and glands of the breast as well as the surrounding areas through 
non-invasive methods. Such images facilitate the identification of lumps, burrs, slight calci-
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fications, and cancer spread and metasta-
sis in the breast. Notably, mammography 
approaches have advantages over similar 
imaging techniques, such as ultrasound, in 
detecting microcalcifications.7 However, it is 
very difficult to locate and characterize a le-
sion, and the consistency of doing so across 
doctors is very poor.8,9 Lehman et al.10 report-
ed that the average sensitivity and specificity 
of reviewing mammography images were 
86.9% and 88.9%, respectively. In addition, 
the false positive and false negative rates 
of mammography assessment are approx-
imately 7%–12% and 4%–34%, respective-
ly.11,12 Nevertheless, mammography remains 
the gold standard for the detection of ma-
lignancy, with its high resolution enabling 
the detection of masses, microcalcifications, 
asymmetries, and architectural distortions. 
For the detection of microcalcifications, in 
particular, mammography has distinct ad-
vantages over ultrasound. To detect malig-
nancy, radiologists have to review a large 
number of images, particularly with digital 
breast tomosynthesis, which impacts inter-
pretation time. Additionally, because the 
detection of malignancy depends on factors 
such as breast density, identifying and accu-
rately localizing a lesion can differ from one 
physician to another.

Several machine learning algorithms have 
been applied to the research of mammog-
raphy data in recent years. In 2014, Wang 
et al.13 proposed a breast tumor detection 
algorithm based on the extreme learning 
machine, which performs breast tumor edge 
segmentation for the microscopic detection 
of a tumor. Similarly, Agrawal et al.14 used a 
support vector machine to perform feature 
extraction on the segmented region in the 
mammogram X-ray image and then target 
detection, which effectively segmented the 
tumor mass region within the normal chest 
parenchyma. Deep learning approaches 
used in medical imaging fields leverage the 

use of more sophisticated algorithms and 
image processing technology to assess sam-
ples with a more refined decomposition of 
tissue properties. The continuing maturity of 
deep learning technology can help doctors 
perform more accurate localization and di-
agnosis of pathological tissues. These algo-
rithms were found to decrease interpretation 
time, which facilitates more rapid treatment. 

In recent years, many scholars have ap-
plied deep learning algorithms to medical 
image recognition problems.15,16 Bayramoglu 
et al.17 proposed two different architectures 
based on a convolutional neural network to 
predict malignant breast tumors. Zhang et 
al.18 constructed a two-layer deep learning 
architecture to automatically extract im-
aging features for classification, and their 
model performed well in terms of classifi-
cation accuracy, sensitivity, and specificity. 

Mohamed et al.19 built and trained a convolu-
tional neural network model based on mam-
mography images to accurately and rapidly 
classify breast density to clarify the risk of BC, 
and the area under the curve (AUC) of the 
model classification reached 0.992. 

However, current deep learning ap-
proaches in BC research are mostly based on 
pathological images or algorithm optimiza-
tion techniques that aim to better segment 
images. Therefore, it is necessary to establish 
a reliable model for assessing BC in mam-
mography images that is comparable to a 
radiologist’s assessment. This study inves-
tigates the effect of a deep neural network 
(DNN) on BC detection in clinical practice.

Methods

Study design

The study was approved by the research 
ethics review board of Peking University (ap-
proval number: 2020-011), and informed con-
sent was waived because it was a retrospec-
tive study. Mammography images acquired 
consecutively between April 2020 and June 
2020 at a single institution were analyzed, 
and all of them were anonymized. The exclu-
sion criteria included cases with prior benign 
and malignant breast surgery, breast reduc-
tion, breast augmentation, chemotherapy, 
radiation therapy, or unknown results from 
prior biopsies. All mammography analyses 
were performed by two radiologists expe-
rienced in assessing breast mammography 
images. The lesions were divided into four 
categories according to the corresponding 
mammograms, magnetic resonance imag-
ing (MRI), and pathological results. True-pos-

itive/negative and false-positive/negative 
cases were identified by a positive/negative 
result of the radiologist assessment and con-
firmation or negation based on MRI and/or 
pathological evaluation, respectively. Four 
mammogram images were acquired for each 
patient and included two images in a medio-
lateral oblique projection (MLO) and two im-
ages in a cranial-caudal projection (CC).

Development of a DNN model 

Faster R-CNN was employed as the deep 
learning framework for model detection, and 
ResNet50 was used for feature extraction. 
The feature pyramid network was used to 
construct new features based on data aug-
mentation techniques. Features were fused 
in different convolutional layers of the Res-
Net, ensuring that the model incorporated 
multi-scale information to improve the abil-
ity to detect small lesions. The lesion detec-
tion network is shown in Figure 1. 

Image resizing for uniform resolution: 
The size of the input image was converted to 
a pixel size of 0.15 mm x 0.15 mm. Random 
cropping was used for data expansion at a 
rate of 0.8-1.2 times the size of the original 
image. Images were also randomly flipped 
horizontally. The model training used four 
NVIDIA TITAN RTX P8 graphics cards with a 
configuration of 28 GB video memory and a 
batch size of four images.

Algorithm optimization: The momentum 
stochastic gradient descent learning rate 
was 0.005. The learning rate was adjusted ac-
cording to the number of iterations using the 
learning rate scheduler method for learning 
rate decay. The L2-norm regularization pa-
rameter weight decay was 0.0001. The max-
imum number of iterations was set to 25,000, 
and the number of warm-start iterations was 
500. In the test phase, horizontal and vertical 
flips were used to expand the data.

Image gray-level normalization: If the 
original gray value was not compatible with 
the algorithm for subsequent prediction, the 
grayscale of the image was normalized to 
ensure consistency in the gray value range 
across different images. The grayscale of the 
segmented region was recorded, and the 
gray level was linearly mapped according to 
the statistical results. This procedure was per-
formed so that 90% of the gray value pixels 
were in the range of 0–1, 5% of the gray val-
ue pixels were <0, and 5% of the gray value 
pixels were >1.

Breast segmentation: The background 
of the breast mammogram images was re-

Main points

• The use of a deep neural network (DNN) im-
proved breast cancer detection. 

• With the help of the DNN, radiologists could 
more accurately detect tumor mass, calcifi-
cation, and asymmetric compaction. 

• An auxiliary effect of the deep learning 
model on doctors of different seniority was 
that it increased the detection accuracy of 
inexperienced doctors. 

• The deep learning model shortened the 
average mammogram assessment time for 
both junior and senior radiologists.
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moved, and only the breast was retained. 
The grayscale distribution histogram of the 
image was recorded, and the threshold value 
was obtained using the triangle method. The 
image pixels with a gray level higher than the 
threshold were segmented as the breast. The 
minimum rectangular range that contained 
the breast was then taken as the input of the 
subsequent module.

Quadrant and depth analysis of the le-
sion: The relationship between the images 
in the MLO and CC position was judged ac-
cording to multiple features. After the de-
tection stage, the location, size, type, and 
probability of a lesion(s) were obtained. 
Then, more features of the lesion were an-
alyzed to match lesions more accurately. 
These features included the quadrant of the 
lesion and the distance between the lesion 
and the nipple.

Lesion quadrant division: A mask was 
used to indicate the location of the lesions, 
and the classification network was used to 
classify the MLO lesions. The lesions in the 
MLO position were divided into five regions: 
upper, middle, lower, axillary tail, and areola. 
The lesions in the CC position were divided 
into four quadrants: outer, middle, inner, and 
areola. 

Lesion depth regression: The whole 
mammogram image and the mask of the tar-
get lesion on the image were spliced togeth-
er as two channels of the image. The distance 
from the lesion to the nipple was obtained 
using the regression network. Distance 0 
represented the nipple, and distance 1 repre-
sented the pectoralis major muscle. 

Focus matching: The lesion features in 
the CC and MLO positions were combined 
to predict the probability of two lesions be-
ing the same lesion using the GBTD method. 
To construct a matching probability matrix, 
each element on the matrix represented the 
matching probability of the two lesions. The 
matching relationship between MLO and CC 
lesions was obtained according to a greedy 
algorithm. The remaining lesions without 
matching or with a matching probability 
that was too small were considered as a sin-
gle lesion, and no matching relationship was 
given.

The classification of benign and malig-
nant lesions: Multi-task learning was used to 
predict benign and malignant lesions as well 
as their morphological distribution at the 
same time. The two tasks promote and com-
plement each other and make the overall 
performance more accurate than conduct-
ing one task alone. The data from 14,811 cas-

es were used for training, comprising 7,519 
cases of labeled data and 7,292 cases of un-
labeled data. Among the labeled data, the 
labeled regions of interest included 10,480 
masses, 6,358 calcifications, 1,713 asym-
metries, and 311 architectural distortions. 
For each lesion, the category of the lesion, 
such as mass or calcification, was marked, 
and the outline of the lesion was drawn. The 
backbone network of the detection model 
used transfer learning, and the network was 
trained with a large amount of ImageNet 
data that was transferred to the breast detec-
tion model. This has been shown to signifi-
cantly improve the detection performance 
of the model. The percentages of the training 
set and the test set were 80% and 20%, re-
spectively.

For robustness, we trained the DNN algo-
rithm in three random 80% partitions of the 
training set. After the detection of lesions, 
multi-task learning was used to analyze the 
shape, edges, and other attributes of the 
lesions and to predict their benign or malig-
nant nature.

The reading time and breast imaging re-
porting and data system (BI-RADS) score 
of senior and junior radiologists with and 
without the help of a DNN model

A total of 880 images from 220 patients 
were used to test the impact of the DNN 
model on radiologist assessment. Two senior 
radiologists (with 16 and 18 years of mam-
mogram reading experience) and two junior 
ones (with 1 and 2 years of mammogram 
reading experience) reviewed all four mam-
mogram images from each study in random 
order, both with and without the aid of the 
DNN. The second reading was performed 
three weeks later. For both readings, the or-
der of images was randomized on an individ-
ual assessor basis. All the radiologists were 
blinded to the patient information. For each 
patient, the radiologists provided a BI-RADS 
score according to the following scale: 1 = 
negative; 2 = benign; 3 = probably benign; 4 
= suspicious abnormality (a possibility of ma-
lignancy or cancer); and 5 = highly likely to 
be malignant. Reading times were measured 
from the opening of a new case to the vali-
dation of the lesions and the BI-RADS score. 
Both the reading time and BI-RADS score 
were recorded for later analysis.

Statistical analysis

All statistical analyses were performed 
using IBM SPSS 20.0 (SPSS Inc, Chicago, IL, 
USA) and MedCalc statistical software (ver-

Figure 1. Lesion Detection Network. The input mammograms include two cranial-caudal projection (CC) 
images and two mediolateral oblique projection (MLO) images, the features of which were extracted using 
ResNet50. The features were then fused using a Feature Combination Network comprised of right and left 
MLO and CC images. New features were also constructed with multi-scale information to improve the ability 
to detect small lesions. Feature pyramid network: Features of the input images were extracted, and several 
layers of features from fine to abstract were obtained. Feature fusion network: the information from four 
molybdenum palladium images of the same patient was used to improve the quality of the features and 
improve lesion detection. This framework included a left and right feature fusion network and MLO/CC 
feature fusion network. Key area extraction network: a series of anchors were set with different positions, 
sizes, and aspect ratios using a sliding window. The key area extraction network classified and regressed 
each anchor to predict whether the anchor was the key area and where the key area was located. ROI, region 
of interest.
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sion 20.026, MedCalc Software). Descriptive 
statistics of the data are presented with n 
(%) and are shown as median (min–max) 
for non-normalized variables. The normal-
ity test was determined using the Shap-
iro–Wilk test. Comparisons between the 
two groups were performed using the Wil-
coxon signed-rank test for variables with a 
non-normal distribution. Receiver operat-
ing characteristic (ROC) curves and the AUC 
were used to evaluate the performance of 
the DNN model as well as the senior and 
junior radiologists, with and without the 
help of artificial intelligence (AI). The sen-
sitivity, specificity, and Youden index of the 
ROC curves were calculated, and the high-
est Youden index was used to determine 
the cut-off value. Comparisons of the ROC 
curves were evaluated using a Delong test. 
The inter-rater agreement of the senior and 
junior radiologists in terms of the location 
and BI-RADS assessment was evaluated 
using a kappa coefficient. The kappa coeffi-
cient for the strength of the agreement was 
categorized as follows: −1, none; 0, poor; 
0.0–0.20, slight; 0.21–0.40, fair; 0.41–0.60, 
moderate; 0.61–0.80, substantial; and 0.81–
1: almost perfect.20 A P value <0.05 was con-
sidered statistically significant.

Results
The ROC curves of the models for the 

four distinct lesion features are shown in 
Figure 2. The AUCs of the model for mass, 
calcification, asymmetric compaction, and 
structural distortion were 0.877 [95% confi-
dence interval (CI), 0.843–0.906], 0.937 (95% 
CI, 0.910–0.958), 0.697 (95% CI, 0.652–0.740), 
and 0.624 (95% CI, 0.577–0.669), respective-
ly. The sensitivity values for the detection 
of the same features were 76.71%, 89.73%, 
73.68%, and 99.77%, respectively. Similarly, 
the specificity values for these four features 
were 98.66%, 97.68%, 65.76%, and 25.00%, 
respectively (Table 1).

Figure 3 displays the ROC curves of the 
senior and junior radiologist assessments 
with and without the help of the model. The 
corresponding AUC, specificity, and sensitiv-
ity values are listed in Table 1. For senior ra-
diologists, the AUC values of the ROC curves 
for assessments based on mass with and 
without the help of the model were 0.926 
and 0.909, respectively. Similarly, for junior 
radiologists, the ROC curves were 0.879 and 
0.803 with and without the help of the mod-
el, respectively. Regarding calcification, the 
AUC values of the ROC curves for the senior 
radiologists were 0.955 and 0.946 with and 

without the aid of the model, respectively. 
In addition, the AUC values of the calcifica-
tion ROC curves for the junior radiologists 
were 0.932 and 0.898 with and without the 
aid of the model, respectively. The AUCs 
between the radiologists with and without 
the aid of the model were compared using 
a Delong test (Table 2). In general, the AUCs 
of the junior radiologists for mass and calcifi-
cation were significantly larger with the DNN 
model than those without the model (both P 
< 0.001), but there were no significant differ-

Table 1. AUC values and related parameters for the detection of the four lesion features of mass, calcification, asymmetry, and distortion by 
senior and junior radiologists with and without the assistance of the deep neural network model

Features AUC SE P value Sensitivity Specificity Cut-off

Mass

AI 0.877 (0.843 – 0.906) 0.018 <0.001 76.71 98.66 0.754

J_noAI 0.803 (0.775 – 0.829) 0.014 <0.001 61.3 99.33 0.606

J_AI 0.879 (0.856 – 0.900) 0.013 <0.001 77.74 98.15 0.759

S_noAI 0.909 (0.888 – 0.927) 0.011 <0.001 82.53 99.33 0.819

S_AI 0.926 (0.906 – 0.942) 0.010 <0.001 85.62 99.5 0.851

Calcification

AI 0.937 (0.910 – 0.958) 0.012 <0.001 89.73 97.68 0.874

J_noAI 0.898 (0.877– 0.918) 0.011 <0.001 80.27 99.42 0.797

J_AI 0.932 (0.913 – 0.947) 0.009 <0.001 87.3 99.03 0.863

S_noAI 0.946 (0.929 – 0.960) 0.008 <0.001 89.73 99.42 0.892

S_AI 0.955 (0.939 – 0.968) 0.007 <0.001 91.62 99.42 0.910

Asymmetric

AI 0.697 (0.652 – 0.740) 0.038 <0.001 73.68 65.76 0.395

J_noAI 0.626 (0.593 – 0.658) 0.028 <0.001 34.21 91.01 0.252

J_AI 0.661 (0.628 – 0.692) 0.030 <0.001 51.32 80.79 0.321

S_noAI 0.782 (0.753 – 0.808) 0.028 <0.001 61.84 94.46 0.563

S_AI 0.801 (0.774 – 0.827) 0.026 <0.001 72.37 87.93 0.603

Distortion

AI 0.624 (0.577 – 0.669) 0.065 0.058 25 99.77 0.248

J_noAI 0.516 (0.482 – 0.549) 0.021 0.516 4.17 98.96 0.031

J_AI 0.539 (0.505 – 0.572) 0.029 0.179 8.33 99.42 0.078

S_noAI 0.679 (0.647 – 0.709) 0.051 0.000 37.5 98.26 0.358

S_AI 0.644 (0.611 – 0.675) 0.047 0.003 29.17 99.54 0.287

AUC, area under the curve; SE, standard error; J_noAI, junior radiologists unaided; J_AI, junior radiologists aided; S_noAI, senior radiologists unaided; S_AI, senior radiologists 
aided. AI, artificial intelligence.

Figure 2. Receiver operating characteristic curve of 
the model for the detection of mass, calcification, 
asymmetry, and distortion. AI, artificial intelligence.



 

592 • July 2023 • Diagnostic and Interventional Radiology Zhou et al.

ences for the senior radiologists (P = 0.081 for 
mass and P = 0.061 for calcification). Howev-
er, the AUCs for asymmetric compaction and 
structural distortion showed no difference 
between the radiologists with or without the 
aid of the model (for asymmetric compac-
tion, P = 0.244 for junior radiologists and P 
= 0.475 for senior radiologists; for structural 
distortion, P = 0.527 for junior radiologists 
and P = 0.554 for senior radiologists). On 
the other hand, the AUCs of the senior ra-
diologist assessments for mass, calcification, 
asymmetry, and distortion were significant-
ly larger than those of the junior radiologist 
assessments with (P < 0.001, P = 0.003, P < 
0.001, and P = 0.044) and without the aid of 
the model (all P < 0.001) (Table 2).

The review times of the radiologists in the 
aided and unaided scenarios were compared 
using a Wilcoxon signed-rank test (Table 3). 
The median reading times of the senior and 
junior radiologists unaided were 321 (195–
491) s and 739 (445–1003) s, respectively. 
With the help of the model, the median read-
ing times of the senior and junior radiologists 
fell to 273.5 (129–469) s and 572 (357–951) 
s, respectively, representing a reduction of 
41.9 s (13.6%) for the senior radiologists and 
153.5 s (20.5%) for the junior radiologists. The 
median review times of the senior and junior 
radiologists were both significantly short-

er with the DNN model than those without 
the model (both P < 0.001) (Table 3). Figure 4 
shows an example of using AI to help detect 
linear pleomorphic calcifications in the up-
per left outer quadrant, which suggests a BI-
RADS score of 4C. 4C means high suspicion 
for malignancy (>50% to <95% likelihood of 
malignancy).

The inter-rater agreement of the senior 
and junior radiologists in terms of tumor 
mass, calcification, asymmetry, and distor-
tion assessment was evaluated using the 
kappa coefficient. As shown in Table 4, for 
junior radiologists, the kappa coefficients of 
mass assessment were 0.836 and 0.676 with 
and without the help of DNN, respectively, 
and those of calcification assessment were 
0.913 and 0.839 with and without the help 
of DNN, respectively. These values indicate 
that the reliability of the junior radiologist as-
sessments regarding mass and calcification 
can be improved with the help of the DNN 
model.

Discussion
In the current study, a DNN model was 

built and found to be helpful in the detection 
of masses, calcifications, asymmetries, and 
architectural distortions representing BC. 
The model was able to significantly shorten 

the review time of mammogram images by 
both senior and junior radiologists. Typically, 
radiologists analyze multiple mammograph-
ic images of the same patient, which is time- 
and energy-consuming. The DNN model 
proposed in the current work is very prom-
ising for clinical application and may be used 
to help radiologists more efficiently review 
mammography images, enhancing the ac-
curacy of their diagnosis with the ultimate 
goal of improving the prognosis of BC. These 
advantages of the model were further exem-
plified by the fact that mammogram reading 
time decreased for both senior and junior ra-
diologists when using AI.

Previous research has used different 
deep-learning methods to detect BC and 
has demonstrated a gradual performance 
improvement.21-23 The Dialogue for Reverse 
Engineering Assessments and Methods chal-
lenge has tested a large number of mam-
mograms and obtained an AUC of 0.87 with 
a sensitivity and specificity of 0.81 and 0.8, 
respectively.24 Another study focused on 
categories of breast lesions according to BI-
RADS scores using a deep convolutional neu-
ral network to analyze mammograms.25 The 
sensitivity of this model for the detection of 
mass, calcification, asymmetry, and compac-
tion was higher than 74% for each feature 
and is comparable with the Breast Cancer 

Table 2. AUC values for the detection of the four lesion features of mass, calcification, asymmetry, and distortion by senior and junior 
radiologists with and without the assistance of the deep neural network model

Features J_noAI vs. J_AI S_AI vs. J_AI S_noAI vs. J_noAI S_noAI vs. S_AI

Mass P < 0.001 P < 0.001 P < 0.001 P = 0.081

Calcification P < 0.001 P = 0.003 P < 0.001 P = 0.061

Asymmetry P = 0.244 P < 0.001 P < 0.001 P = 0.475

Distortion P = 0.527 P = 0.044 P < 0.001 P = 0.554

AUC, area under the curve; J_noAI, junior radiologists unaided; J_AI, junior radiologists aided; S_noAI, senior radiologists unaided; S_AI, senior radiologists aided.

Table 3. Junior and senior radiologist review times for unaided and artificial intelligence-aided cases using the Wilcoxon signed-rank test

Review time (seconds)

Group Unaided Aided P value

Junior radiologists Median (min–max) 739 (445–1003) 572 (357–951) <0.001

Senior radiologists Median (min–max) 321 (195–491) 273.5 (129–469) <0.001

Table 4. The consistency between senior and junior radiologists in recognizing mass, calcification, asymmetry, and distortion using the 
kappa coefficient

Senior (without AI) Senior (with AI) Junior (without AI) Junior (with AI)

Kappa P value Kappa P value Kappa P value Kappa P value

Mass 0.861 <0.001 0.900 <0.001 0.676 <0.001 0.836 <0.001

Calcification 0.938 <0.001 0.981 <0.001 0.839 <0.001 0.913 <0.001

Asymmetric 0.495 <0.001 0.343 <0.001 0.298 <0.001 0.303 <0.001

Distortion 0.383 <0.001 0.156 0.001 -0.011 0.814 0.244 <0.001

AI, artificial intelligence.
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Surveillance Consortium benchmark used in 
another study that exhibited a sensitivity of 
75%.10

In this study, with the assistance of the 
DNN model, the radiologists were able to 
recognize features such as mass, calcifica-
tion, asymmetry, and distortion with high 
sensitivity and specificity. Akselrod-Ballin et 
al.26 reported that a deep learning model was 
able to detect 48% of the false-negative find-
ings missed by radiologists and confirmed 
by surgical pathology with a sensitivity of 
87%. According to the results from the pres-
ent study, the time that senior and junior 
radiologists spent on diagnosis was signifi-
cantly reduced with the use of the model, 
especially for junior radiologists. Therefore, 
it was established that a deep learning algo-
rithm trained by experts in the field was able 
to better assist less experienced radiologists 
who are at particular risk of making diagnos-
tic errors. 

The analysis described in this paper 
showed that the proposed model can be 
used to assist junior radiologists and help 
improve their performance in identifying 
lesions when reviewing mammograms. Ad-
ditionally, this study showed that when ju-
nior radiologists were provided with the as-
sistance of the trained model, their ability to 
detect breast lesions significantly improved, 
thus diminishing diagnostic errors and im-
proving efficiency.

There are several limitations to this study 
that should be noted. First, the DNN model 
used in the current work was verified in a 
dataset acquired from the same mammog-
raphy vendor and manufacturer. Further-
more, the patients from whom the data 
were collected were all from the Peking 
University Shenzhen Hospital. Therefore, 
the results presented here must be validat-
ed using images from different vendors and 
populations. Second, only mammograms 
were analyzed in this study to improve le-
sion detection, and clinical information was 
not utilized. In clinical practice, radiologists 
usually review a patient’s clinical history and 
symptoms before making a diagnosis based 
on mammographic data. Therefore, it would 
be useful to analyze whether the use of clin-
ical information and imaging data together 
could help radiologists make even more ac-
curate diagnoses. In addition, the number of 
patients in this study with asymmetry and 
structural distortion was small, which may 
have affected the results to a certain extent.

In conclusion, a DNN model was devel-
oped and validated using a dataset of mam-

Figure 3. (a-h) Receiver operating characteristic curves of the diagnosis based on mass (a, e), calcification 
(b, f), asymmetry (c, g), and structural distortion (d, h) by senior and junior radiologists, with or without the 
help of artificial intelligence.
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mograms to improve the detection of BC 
by radiologists. The model was especially 
successful at detecting the mass, calcifica-
tion, asymmetric compaction, and structural 
distortion of BC lesions. With the assistance 
of the model, both senior and junior radiolo-
gists were able to recognize a lesion within a 
shorter review time.
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