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ABSTRACT
As an umbrella term, artificial intelligence (AI) covers machine learning and deep learning. This re-
view aimed to elaborate on these terms to act as a primer for radiologists to learn more about the 
algorithms commonly used in musculoskeletal radiology. It also aimed to familiarize them with the 
common practices and issues in the use of AI in this domain.
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Approximately 1.71 billion people have musculoskeletal (MSK) conditions worldwide.1 
The need for imaging on MSK disorders is increasing in parallel with the rising and 
progressively aging global population,2 posing a significant threat of fatigue in radi-

ologists and unmet needs for patients.3,4 The evolution of MSK radiology traces back to the 
inception of the field of radiology itself with the discovery of X-rays in 1895. On a separate 
trajectory, the 1950s witnessed the introduction of the first programming languages and soft-
ware, raised by Turing’s5 question, “can machines think?”. However, it was not until 1992, nearly 
a century later, that these two fields merged, culminating in the first research into artificial 
intelligence (AI) in radiology.6 Today, AI has become an ever-growing field and is reshaping 
the world, including medicine, with radiology at the forefront, evidenced by Food and Drug 
Administration (FDA)-approved AI-based tools. The first AI-based algorithm was approved 
by the FDA in 2017. By 2022, radiology dominated the medical field by a striking 87% of all 
FDA-authorized AI-based devices.7 In 2017, MSK applications were the second most common 
subject of AI-related publications in radiology, second only to neuroradiology.8

Thus far, AI research in radiology has primarily focused on interpretive tasks, including frac-
ture detection, osteoarthritis detection and grading (cartilage and meniscal lesions), bone 
age determination, osteoporosis and bone quality assessment, tissue/region identification 
and segmentation, radiographic angle and bone measurements, clinical decision making on 
various bone and ligament anomalies, lesions characterization and diagnosis of infectious, 
oncological or rheumatological diseases, quantitative analysis and radiomics, and estimation 
of patient demographics.9 However, AI also offers promising solutions for non-interpretive 
tasks, which aim to ensure high-quality care and time-efficient outputs for the rising demands 
on imaging.10,11 Indeed, non-interpretive tasks, such as protocoling, quality control, and over-
seeing imaging studies, comprise 44% of a radiologist’s daily workload.12 However, most of 
these tasks are neglected where productivity is mainly assessed by the number of produced 
reports. Research in the emergency radiology department shows that for every 1 minute 
spent on the phone by radiologists, the report turnaround time increases by approximately 
4 minutes.12 Therefore, it is imperative to create time-efficient solutions to meet the rising 
demand in the field, where AI offers revolutionary solutions.

Therefore, radiologists must embrace a comprehensive understanding of AI and machine 
learning (ML) to integrate these technologies into their practice effectively, as described in 
Figure 1. Proficiency in data interpretation and validation will ensure the accuracy and reli-
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ability of AI algorithms beneficial for clinical 
practice. Understanding the underlying prin-
ciples of ML models, such as neural networks 
and deep learning (DL) architectures, is es-
sential for critical appraisal and informed de-
cision-making. Radiologists must also grasp 
the limitations and potential biases inherent 
in AI systems, emphasizing the importance 
of human oversight in clinical decision-mak-
ing. Furthermore, knowledge of regulatory 
frameworks and ethical considerations sur-
rounding AI adoption in healthcare is imper-
ative to navigate legal and ethical challenges. 

Algorithms
Alongside advancements in computa-

tional power, computer algorithms, and data 
availability, AI has gained popularity as a 
rapidly developing tool that can transform 
industries. Broadly defined, AI refers to com-
puter systems that can perform assigned 
tasks, such as learning, decision-making, 
and problem-solving, with satisfactory or 
better-than-expected performance within a 
given context. Subsets of AI include the fol-
lowing: artificial narrow intelligence, which 
can perform specific tasks well but cannot 
transfer knowledge; artificial general intelli-
gence, which can transfer knowledge across 
systems or tasks; and artificial superintelli-
gence, which functions beyond the capabil-
ity of human beings and is currently mainly 

conceptualized.13 Commonly used AI con-
cepts and descriptions are listed in Table 1. 

ML essentially entails all techniques that 
can be employed to train a machine to 
mimic human performance. In the current 
context, it refers14 to the development of al-
gorithms that predict discrete labels (classi-
fication), continuous quantities (regression), 
data subgroups (clustering), or important 
features (dimensionality reduction) based 
on previous experiences using probability, 
statistics, and linear algebra. Traditional ML 
algorithms include linear classifiers, logis-
tic regression, decision trees, and near-
est-neighbor searches. Each of these algo-
rithms seeks to learn a mapping between 
input and output variables by defining de-
cision boundaries between labeled data or 
clustering of the data.

DL refers to a subset of ML that utilizes 
neural networks to learn new high-level fea-
ture representations of data for computer 
vision tasks, such as object segmentation, 
classification, and detection, with high ef-
ficiency.15 Neural networks are composed 
of multiple layers of interconnected nodes 
with internal weights modeled after bio-
logical neural systems. The network learns 
to perform tasks by iteratively performing 
complex, non-linear transforms, involving 

passing forward input data through the net-
work to predict a desired output and then us-
ing the discrepancy between the predicted 
and expected output to update the internal 
weights of the nodes in the network to im-
prove task performance. 

Convolutional neural networks (CNNs) 
perform convolution operations over local 
regions using shared convolution weights 
such that networks achieve translational 
invariance (i.e., objects can be detected re-
gardless of location). Additional pooling op-
erations down-sample data representations, 
automatically extracting relevant spatial 
hierarchical features. Variational CNNs have 
modified the underlying network structure 
to improve versatility and effectiveness. The 
two-dimensional (2D) U-Net was a significant 
breakthrough for medical imaging tasks, par-
ticularly segmentation. In 2015, Ronneberg-
er et al.16 proposed a unique U-shaped archi-
tecture (Figure 2), which down-sampled and 
up-sampled input images of varying image 
modalities to predict regions of interest with 
“very good performance,” even after training 
with a very limited amount of training data.
Despite their successes, CNNs are prone to 
overfitting, meaning CNN-based models do 
not perform as well on new unseen data. 
They also suffer from a requirement for large 
amounts of data for training and a lack of in-

Figure 1. A schematic diagram of the usage of artificial intelligence (AI) in multiple levels of musculoskeletal 
radiology before, during, and after examination. *It is important to emphasize that continuous input from 
radiologists is crucial to minimize risks from AI in real-world clinical scenarios and to provide uncompromised 
patient safety at every step in the flowchart where AI-based solutions are being tested. The figure has been 
created with the help of the Biorender tool (https://www.biorender.com).

Main points

• Proficiency in data interpretation and vali-
dation will ensure the accuracy and reliabil-
ity of artificial intelligence (AI) algorithms 
beneficial for radiologists in their clinical 
practice.

• Understanding the underlying principles 
of machine learning (ML) models, such as 
neural networks and deep learning archi-
tectures, is essential for critical appraisal and 
informed decision-making and has been 
covered in this article.

• This article also discusses the limitations 
and potential biases inherent in AI systems, 
emphasizing the importance of human 
oversight in clinical decision-making.

• Furthermore, knowledge of regulatory 
frameworks and ethical considerations sur-
rounding AI adoption in healthcare is im-
perative to navigate legal and ethical chal-
lenges.

• Continuous learning and collaboration with 
data scientists and AI experts are essential 
for radiologists to harness the full potential 
of AI and ML in improving diagnostic accu-
racy, efficiency, and patient care while up-
holding professional standards and ethical 
principles.
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terpretability due to the model’s architectur-
al complexity.

Federated learning proposes a framework 
to address challenges with model general-
izability, with special benefits when using 
medical data. An aggerate model encapsu-
lates shared model weights from multiple 
collaborators who trained the model on pri-
vate datasets.17

Generative adversarial networks (GANs) 
are popular for image-to-image translation, 
consisting of two opposing networks: a gen-
erator and a discriminator.18 The generator 
creates an image to fool the discriminator, 
while the discriminator attempts to discern 
real or synthetic images.19 Due to the oppo-
sitional nature of the network, GANs can be 
challenging to train and often require care-
ful consideration of hyperparameters. Mode 
collapse occurs when the generator pro-
duces similar images that may not capture 
the full distribution of the training data and 
the discriminator is unable to provide useful 
feedback to guide training. 

Recently, large language models and 
vision transformers (ViTs)20 have spurred a 
new wave of innovation. Both of these DL 
architectures are based on transformers, 
which consist of an encoder, which extracts 
meaningful features from input data, and a 
decoder network, which uses the features to 
generate outputs. Transformers process data 
as a sequence of tokens, enabling the mod-
el to capture global relationships between 
the data (Figure 3). For ViTs, images are vec-
torized into tokens, which can be combined 
with text.21

A typical workflow to develop an ML algo-
rithm involves several distinct stages. It be-
gins with problem definition and data collec-
tion where a specific object is identified, and 
relevant data is gathered. Subsequently, data 
preprocessing involves cleaning, transform-
ing, and processing the dataset for training. 
Common preprocessing techniques include 
image normalization and clipping to achieve 
favorable image intensity ranges and con-
trast for ML models. Before model develop-
ment, data is split into training, validation, 
and testing subsets, often with balanced dis-
tributions of relevant metadata, such as age, 
for proper evaluation of model performance. 
During training, models may be prone to 
overfitting if highly sensitive to patterns in 
the training dataset. The validation dataset 
allows for the evaluation of model perfor-
mance during training, while the test set is 
only used to assess performance on the final 
selected model for unbiased assessment. 

Figure 2: An introduction to the seminal U-Net architecture. Reproduced via Creative Commons License 
from.16

Table 1. A list of commonly used artificial intelligence concepts and descriptions

Concepts Meanings in one line

Artificial intelligence (AI) The simulation of human intelligence processes by machines, 
particularly computer systems.

Machine learning (ML) A subset of AI that allows systems to learn from data and improve 
over time without being explicitly programmed.

Deep learning A subset of ML where artificial neural networks mimic the 
structure and function of the human brain to process data.

Neural networks A system of algorithms modeled after the human brain, used to 
recognize patterns.

Natural language processing The ability of computers to understand, interpret, and generate 
human language.

Computer vision The field of AI that enables computers to interpret and understand 
visual information from the real world.

Reinforcement learning A type of ML where an agent learns to make decisions by trial and 
error, receiving feedback in the form of rewards or penalties.

Supervised learning A type of ML where the model is trained on labeled data, with 
input–output pairs provided.

Unsupervised learning A type of ML where the model is trained on unlabeled data and 
must find patterns and relationships on its own.

Semi-supervised learning A hybrid approach where the model is trained on a small amount 
of labeled data and a large amount of unlabeled data.

Transfer learning An ML technique where a model trained on one task is 
repurposed or fine-tuned for a similar task.

Generative adversarial networks A class of algorithms used in unsupervised learning to generate 
new data instances similar to a given dataset.

Overfitting When a model learns to perform well on the training data but fails 
to generalize to new, unseen data.

Bias and variance
Bias refers to the error introduced by approximating a real-world 
problem with a simplified model, while variance refers to the error 
introduced by sensitivity to fluctuations in the training set.

Feature engineering The process of selecting and transforming variables or features to 
improve the performance of ML algorithms.

Hyperparameters Parameters that are set prior to training and control the learning 
process of ML algorithms.

Ensemble learning A technique that combines multiple models to improve the 
performance of the overall system.
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Next, model selection and training occur, 
where various algorithms are evaluated, and 
a suitable model is chosen. Existing models 
may offer excellent zero-shot capabilities 
such that no modification of model weights 
is needed. On the other hand, models may 
be trained for a specific use case by fine-tun-
ing, which involves further training of a pre-
trained model on a smaller, targeted data 
set. After training, the model is evaluated 
on the test dataset using appropriate met-
rics specific to the objects of the model. Fi-
nally, the model is deployed and undergoes 
monitoring and maintenance to ensure op-
timal performance over time. This iterative 
process requires collaboration between do-
main experts, data scientists, and computer 
programmers to achieve successful out-
comes. Some of the crucial technical terms 
and metrics used in everyday ML, and what 
they mean, are listed in Table 2. Although 
AI seems to be an omnipresent tool in cur-
rent radiology practices, many users remain 
unfamiliar with the basic concepts, utilities, 
challenges, processes, and biases associated 
with it. We aim to provide comprehensive 
starting content that prepares the commu-
nity of medical experts to become tuned to 
the vocabulary and its nuances and to get a 
sense of how AI can be integrated into their 
daily MSK radiology practice.

Applications in musculoskele-
tal radiology

Image acquisition

Imaging acceleration

Extensive research dedicated to reducing 
the time required to acquire medical images 
has led to the development of unique data 

sampling and reconstruction techniques in 
MSK radiology, primarily for computed to-
mography (CT) and magnetic resonance im-
aging (MRI). In particular, MRI is an important 
modality for radiologists to diagnose many 
MSK conditions, but it suffers from increased 
cost and increased time to acquire images 
compared with other modalities. AI-based 
image acceleration techniques aim to break 
those Nyquist limits, though this must be 
done while considering any in-domain and 
domain-shift artifacts. Reconstruction, there-
fore, is equally essential to ensure the quali-
ty of images is clinically preserved in rapidly 
acquired MRI. AI researchers have developed 
algorithms that achieve both high accelera-
tions for faster imaging and excellent recon-
stitution with comparable or improved image 
resolution. Such methodologies have been 
developed using data-driven guidance, such 
as compressed sensing or dictionary learn-
ing, or physics-guided networks combined 
with artifact removal.22 These techniques are 
often modified for solution-specific prob-
lems, including accelerating higher-dimen-
sional 2D or 3D MRI scans, such as dynamic 
(temporal) MRI.23 AI techniques for the joint 
optimization of a non-Cartesian k-space 
sampling trajectory and an image-recon-
struction network have been rising in pop-
ularity. For example, one such framework, 
PROJECTOR,24 proposed dubbed projection 
for jointly learning non-Cartesian trajectories 
while optimizing reconstructor trajectories. 
It also ensured that the learned trajecto-
ries were compatible with gradient-related 
hardware constraints. Previous techniques 
enforced these constraints via penalty terms, 
but PROJECTOR enforces them via embed-
ded steps that project the learned trajectory 
on a feasible set. 

Synthesis of images and parametric maps

Another exciting application of AI is to 
characterize meaningful tissue maps or im-
ages from raw data (Figures 4 and 5). Wu et 
al.25 proposed CNNs for synthesizing water/
fat images from only two echoes instead of 
multiple. The method achieved high-fidel-
ity output images, a 10-fold acceleration in 
computation time, and also generalizability 
to unseen organ images and metal artifacts. 
Zou et al.26 have also proposed reconstruct-
ing free-breathing cardiac MRI data and syn-
thesizing cardiac cine movies from manifold 
learning networks. This enables a unique 
generation of synthetic breath-hold cine 
movies with data on demand: specifically, 
movies with different inversion contrasts. 
Additionally, it enables the estimation of T1 
maps with specific respiratory phases. So 
far, the derivation of tissue parameter maps 
has been achieved by repeating acquisition 
in steady-state conditions and longer scan 
times.22 However, rapid extraction of such 
parameters is no longer a challenge due to 
AI-based solutions, such as synthetic map-
ping of T1, T1p, R2*, and T2 relaxation, chemical 
exchange saturation transfer proton volume 
fraction and exchange rate, magnetization 
transfer, and susceptibility. Conventional 
magnetic resonance fingerprinting (MRF) 
is regularly used for quantitative parameter 
estimation. However, it suffers from the com-
putational burden of dictionary generation 
and pattern matching. The burden further 
grows exponentially with the number of 
fitting parameters considered. ML has also 
been utilized to accelerate both the acqui-
sition and reconstruction and thus optimize 
MRF sequences.22

End-to-end design

End-to-end design of reconstruction and 
segmentation techniques have recently 
been a heavy focus in the medical imaging 
community. Often addressed separately, 
these two tasks could benefit from being 
handled in tandem. Tolpadi et al.27 recently 
hosted and summarized a challenge entitled 
“K2S,” hosted at the 25th International Con-
ference on Medical Image Computing and 
Computer-Assisted Intervention (Singapore, 
2022). Eight-times under-sampled raw MRI 
measurements were provided as training 
data with their fully sampled counterparts 
and segmentation masks (i.e., a unique data-
set consisting of 300 knee MRI scans accom-
panied by radiologist-approved tissue seg-
mentation labels). In the testing phase, the 
challenge participants submitted DL models 
that generated high-efficiency segmenta-

Figure 3. An introduction to vision transformers. Reproduced via Creative Commons License from.20
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Table 2. Technical terms and metrics used in everyday machine learning: what do they mean?
Technical terms
Terms Explanations

Feature An individual measurable property or characteristic of a phenomenon being observed, often represented as a variable 
in a dataset.

Label The output or target variable in supervised learning, representing the prediction or classification to be made.
Instance A single example or data point in a dataset, typically represented as a row in a table.

Model A mathematical representation or algorithm that learns patterns and relationships from data to make predictions or 
decisions.

Training data The data used to train a machine learning (ML) model, consisting of input features and corresponding labels.
Test data Data used to evaluate the performance of a trained ML model, separate from the training data.
Validation data Data used to fine-tune hyperparameters and assess model performance during the training process.
Loss function A function that measures the difference between predicted and actual values, used to train and optimize ML models.
Optimization algorithm An algorithm used to adjust the parameters of a model during training to minimize the loss function.

Gradient descent An optimization algorithm that iteratively updates the parameters of a model by moving in the direction of steepest 
descent of the loss function.

Epoch One complete pass through the entire training dataset during the training of an ML model.
Batch A subset of the training data used in one iteration of training, typically chosen to improve efficiency.
Batch size The number of training examples utilized in one iteration of training during the gradient descent process.

Learning rate A hyperparameter that controls the step size during the optimization process, determining the rate at which the model 
parameters are updated.

Stop criteria Criteria by which model stop training, such as for “x” number of epochs or until the loss stops decreasing by “x” %. Clear 
stop criteria and assessment of training loss allow a fairer comparison of model weights.

Regularization Techniques used to prevent overfitting by adding a penalty term to the loss function, discouraging complex models.

Dropout A regularization technique used in neural networks to randomly deactivate neurons during training to prevent 
overfitting.

Activation function A mathematical function applied to the output of each neuron in a neural network, determining its output.

Backpropagation An algorithm used to train neural networks by iteratively adjusting the weights of connections based on the error 
calculated during forward pass.

Convolutional neural network A type of neural network designed for processing structured grids of data, commonly used in image recognition tasks.

Recurrent neural network (RNN) A type of neural network designed to process sequences of data, with connections between units forming directed 
cycles, commonly used in natural language processing tasks.

Long short-term memory A type of RNN unit capable of learning long-term dependencies, commonly used in sequence prediction tasks.
Common metrics
Accuracy The proportion of correctly classified instances (both true positives and true negatives) out of the total instances.
Precision The proportion of true positive predictions out of all positive predictions made by the model.
Recall (sensitivity) The proportion of true positive predictions out of all actual positive instances in the dataset.
F1 Score The harmonic mean of precision and recall, providing a balance between the two metrics.
Specificity The proportion of true negative predictions out of all actual negative instances in the dataset.

ROC area under the curve score The area under the receiver operating characteristic (ROC) curve, representing the model’s ability to discriminate 
between positive and negative classes across different thresholds.

Confusion matrix A table used to evaluate the performance of a classification model, showing the counts of true positive, true negative, 
false positive, and false negative predictions.

Mean squared error (MSE) The average of the squared differences between predicted and actual values, commonly used for regression tasks.
Root mean squared error The square root of the MSE, providing a measure of the average magnitude of error in the predicted values.

Mean absolute error The average of the absolute differences between predicted and actual values, providing a measure of average error 
magnitude.

Peak signal-to-noise ratio A measure of image quality and fidelity, calculated as the ratio between the maximum power of a signal verses noise. 
Commonly used for reconstruction tasks.

Structural similarity index metric A measure of preceptive similarity between two images whose formula is based on comparison of image structure, 
contrast, and brightness. Commonly used for reconstruction tasks.

R-squared A statistical measure of the proportion of variance in the dependent variable that is explained by the independent 
variables in a regression model.

Mean average precision A metric used to evaluate object detection models, representing the average precision over all classes at various 
intersection over union thresholds.

Cohen’s kappa A statistic that measures inter-rater agreement for categorical items, considering how much agreement would be 
expected by chance.

Mean intersection over union A metric commonly used to evaluate semantic segmentation models, measuring the ratio of intersection to union of 
predicted and ground truth masks. Values range from 0 to 1, indicating no to perfect overlap, respectively.

Dice coefficient

A metric for segmentation assessment calculated by the ratio of 2 × the intersection divided by the total area of 
predicted and ground truth masks. This metric has good utility for small regions of interest because there is no bias 
from background labels. Background is often more prevalent so inclusion of these labels leading to unfavorable class 
imbalance.

Log loss (binary cross-entropy) A loss function used in binary classification tasks, measuring the difference between predicted probabilities and actual 
binary outcomes.

Silhouette score A measure of how similar an object is to its own cluster compared with other clusters, used to assess the quality of 
clustering algorithms.

Explained variance score A metric used to evaluate the performance of regression models, measuring the proportion of variance in the target 
variable explained by the model.
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tion maps directly from the under-sampled 
raw data. No correlations were found be-
tween the reconstruction and segmentation 
metrics (Figure 6). Some researchers sug-

gest pre-training segmentation models on 
“pretext tasks”. In these tasks, the model is 
trained to restore distorted images. Context 
prediction and context restoration challeng-

es demonstrate that segmentation models 
can be made robust with pre-training, par-
ticularly if labeled data availability is limit-
ed.22

Image post-processing

Registration

Image registration is a critical process in 
imaging that focuses on the accurate align-
ment of images, which is necessary for the di-
agnosis, treatment planning, and monitoring 
of diseases. However, it is difficult to develop 
robust algorithms to register images of vary-
ing resolution and from different modalities 
efficiently and accurately. This is particularly 
challenging in the presence of significant 
anatomical variation in the case of MSK dis-
ease. Conventional registration methods 
often rely on solving pairwise optimization 
problems, which can be time-consuming 
and computationally expensive.28 Recent 
literature has demonstrated the growing 
application of AI, in particular DL models, in 
image registration. CNNs, for instance, have 
been employed to predict the transforma-
tion required to align images. For example, 
a study by Sokooti et al.29 proposed a CNN-
based method for non-rigid registration on 
3D chest CT follow-up data. Another novel 
approach involves using spatial transformer 
networks (STNs), a DL model that can learn 
spatial transformations to align images. In a 
study by Sokooti et al.29 an STN was used for 
image registration, showing that the model 
could learn complex transformations from 
training data.30 Models such as VoxelMorph, 
a CNN-based unsupervised framework for 
image registration,31 have also shown prom-
ising results. Although VoxelMorph was 
trained on 3D brain MRI, the architecture of 
the models can be used to train on specific 
MSK datasets due to the unsupervised and 
generalizable nature of the models.

Segmentation

Image segmentation is a well-defined 
problem that involves the delineation of 
specific regions of interest. As manual im-
age segmentation is both time-consuming 
and repetitive, the research community has 
explored AI to improve medical image seg-
mentation workflows with great interest.16 
Over the years, various network architectures 
have been developed to segment MSK struc-
tures. One of the most popular CNN models 
is the U-Net, discussed earlier. It is often uti-
lized to solve 2D or 3D segmentation tasks, 
such as identifying muscles, bones, cartilag-
es, menisci, femoral and acetabular regions, 

Figure 5. Four knees from patients who participated in one of two studies: (a) the UCSF (cohort A) study or 
(b-d) the multi-center (cohort B) study at one of three centers. Input ground truth T2 maps exhibit distinct 
intensity elevation and textural patterns compared with ground truth T1ρ maps. Nevertheless, predicted T1ρ 

maps generated by the convolutional neural network preserve these differences, as indicated by the regions 
marked by the arrows. Reproduced via Creative Commons License from.74

Figure 4. Occlusion maps for PatchGAN and U-Net pipelines. For U-Net and PatchGAN, hotspots primarily 
included intercarpal joint regions. Particularly for the U-Net, the maps also emphasized the forearm muscles. 
Given that the synovial joints are where an inflammatory imaging algorithm would see the most utility, the 
fact that both algorithms placed heavy emphasis on the intercarpal regions was promising, indicating that 
both focused on synovitis-relevant regions to make predictions. Reproduced via Creative Commons License 
from.72
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and shoulder structures in knee, spine, hip, 
thigh, and wrist anatomy.32,33 Usually, the 
performance of existing segmentation algo-
rithms can only be fairly compared on a spe-
cific case basis, such as anatomical region, 
medical imaging acquisition setting, or study 
population.34 

DL can establish a useful representation of 
any object without prior super-imposition of 
user-designed features. This is why the per-
formance of a vertebral body segmentation 
algorithm relies on the integrity of interver-
tebral discs and is compromised when disc 
pathologies are present if not trained with 
enough variety of data. Identification of a 
thoracic vertebral body is achieved using 
intrinsic features and its proximity to a disc. 
The disc serves as an extrinsic feature for the 
vertebral body. In other words, it becomes the 
landmark that the network learns in the con-
text of spine segmentation (Figure 7a-c). This 
is also the reason for failures in patch-based 
approaches. Only limited contextual infor-
mation is passed, which limits the outcome 
efficiency. 

On the positive side, network learning 
from diverse data may often learn how the 
images, anatomies, and pathologies are in-
tegrated beyond visual perception, suggest 
new biomarkers as predictors of MSK diseases 
through image analysis, and potentially over-

come the limitations of human perception. 

Anomaly detection

Anomaly detection involves identifying 
abnormal structures or pathologies, such 
as fractures, tumors, or degenerative dis-
eases, amidst a wide range of normal ana-
tomical variations. To accurately distinguish 
between benign variants and clinically sig-
nificant abnormalities, DL models-particu-
larly CNNs-have been implemented due 
to their ability to learn hierarchical feature 
representations.35,36 Autoencoders have 
also been used for unsupervised anoma-
ly detection, whereby during the training 
process for reconstructing input data, they 
learn to encode “normal” data patterns 
and can thus highlight deviations from the 
norm when encountering an anomalous 
data point and produce a significantly dif-
ferent output.37 These models can assist 
in identifying subtle or complex anoma-
lies that may be missed by the human eye 
while providing consistent performance, 
thus reducing variability between differ-
ent radiologists’ interpretations. Workflow 
efficiency can be improved by prioritizing 
cases with potential anomalies identified 
by AI. However, there is a risk of generating 
false positives, false negatives, or model 
hallucinations, leading to unnecessary in-
terventions or missed diagnoses. Radiol-

ogists should seek AI tools that balance 
sensitivity and specificity to minimize false 
positive and negative rates.

Shape modeling

Shape modeling focuses on the accurate 
representation and analysis of the anatom-
ical structures of the MSK system, with the 
challenge of capturing the complex geome-
try and variability of bones and soft tissues; 
this is essential for surgical pre-operative 
planning, prosthesis design, and the study 
of biomechanical properties. Active shape 
models and statistical shape modeling are 
common statistical methods to capture the 
variability of shape across a population and 
can be used for tasks such as segmentation.38 
However, they require a large amount of rep-
resentative data for accurate modeling and 
can be sensitive to outliers with large shape 
deviations (Figure 8). 

DL-based methods have been increasing-
ly utilized for shape modeling due to their 
ability to learn complex, non-linear rela-
tionships. CNNs are commonly used due to 
their ability to process hierarchical features 
from image data directly. For instance, the 
U-Net architecture16 and its variants have 
been extensively used for biomedical im-
age segmentation tasks, providing detailed 
shape models of various anatomical struc-
tures. U-Net’s strength lies in its symmetric 
expanding path, which allows precise local-
ization, a key factor in accurate shape mod-
eling. Another DL model, V-Net,39 is a 3D 
variant of U-Net and is used for volumetric 
medical image segmentation, providing 3D 
shape models. Both U-Net and V-Net have 
shown competitive performance compared 
with traditional methods, with the added ad-
vantage of handling large datasets and cap-
turing fine-grained details. DL models have 
recently been used for shape prediction and 
generation. For instance, GANs have been 
employed to generate realistic 3D shapes 
to synthesize anatomical structures for aug-
mentation and analysis.40 One hidden bene-
fit of an AI-based shape model is the ability 
to predict changes in MSK structures over 
time, aiding in prognostic assessments.35

Radiomics

Radiomics, merging the word “radiology” 
with “-omics” to describe the high-through-
put, data-driven approach to characterizing 
radiological images, involves computer-as-
sisted image analysis where many quantita-
tive “features” are extracted from images that 
are not readily appreciable to the human 

Figure 6. Miccai 2022 challenge results and submissions from the top teams. Sagittal slice segmentations 
are overlaid on intermediate pipeline reconstructions, displaying reconstruction and segmentation metrics 
for the segmented slice. Background anatomy slices were thus blurrier for some teams than for others, as 
different teams had different qualities of intermediate pipeline reconstruction outputs. In this example, 
segmentation quality was strong for all top submissions, with only some overestimation of cartilage 
thickness from the NYU knee artificial intelligence pipeline being apparent. K-nirsh maintains a slight edge 
over UglyBarnacle in reconstruction metrics for this volume. Reproduced via Creative Commons License 
from.27
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eye. Radiomic features have historically in-
volved mathematical operations on the vox-
els of an image, converting morphological 
information about anatomical structure into 
quantitative values. Over time, the number 
of features has grown exponentially as more 
features have been identified, making the 
application of ML techniques, or classifiers, 
to identify radiomic features increasingly 
popular over the past few years.41 Support 
vector machines, random forests, and neu-
ral networks have been used to identify and 

analyze features that are most predictive 
of disease presence, severity, progression, 
and response to treatment. CNNs are also 
increasingly being applied to automate fea-
ture extraction. However, the clinical utility 
of radiomics is still being established, and 
integration into clinical workflows remains a 
challenge.

Metal artifact reduction

AI, particularly DL algorithms, is increas-
ingly applied to mitigate metal artifacts in 

MSK imaging. Metal implants or instruments 
introduce significant artifacts, particularly in 
MRI, which can impair diagnostic accuracy 
and limit the utility of these scans. Current 
literature points to the use of AI in CT and 
radiography, but its application in MRI is less 
explored.42 In the context of MRI, the inte-
gration of AI for metal artifact reduction is 
still in its infancy. Existing techniques with-
out the use of AI, such as multi-acquisition 
variable-resonance image combination and 
slice encoding for metal artifact correction 
(SEMAC), have limitations in their applica-
tion and efficacy. Studies have used neural 
networks to accelerate SEMAC MRI while 
maintaining comparable metal artifact sup-
pression,43 as well as using unsupervised 
learning or attention maps from deep neu-
ral networks to guide correction.44 However, 
most of these studies rely on phantom data 
or MRIs of other organs of interest. There is a 
need for more research and development, in-
cluding robust validation studies, to explore 
the full potential of AI in MSK MRI specifically.

Report generation

Generating accurate and informative re-
ports is a crucial task for radiologists to con-
vey their findings and interpretations to the 
referring physician in a clear, concise, and 
clinically relevant manner. To reduce the re-
porting burden on radiologists, natural lan-
guage processing (NLP) techniques, such as 
recurrent neural networks, long short-term 
memory networks, and more recently, trans-
former-based models, such as bidirectional 
encoder representations from transformers 
and generative pre-trained transformer, can 
be utilized for generating radiological re-
ports. These are trained on a large body of 
annotated radiological reports to learn the 
language and structure of report writing, as 
well as the relationships between imaging 
findings and clinical diagnoses. An addi-
tional speech recognition step can also add 
to the automation of the report generation 
process,45 creating a text output that can be 
considered a “preliminary report.” As radiol-
ogy reports traditionally lack standardized 
structure and content, NLP can then be used 
for the extraction of meaningful or contex-
tual information46 from the preliminary ra-
diology report, whether traditional text or 
text from speech recognition. Applications 
range from the extraction of specific MSK 
data or follow-up recommendations47 to 
the generation of a final report of classifica-
tion, diagnostic criteria, disease probability, 
or follow-up recommendations. However, 
AI may not capture the subtleties of human 

Figure 7. (a) Visualization of segmentation results from each network. The first, second, and third columns 
show examples of the vertebral body, intervertebral disc, and paraspinal muscle segmentation results, 
respectively, along with a three-dimensional Dice coefficient of each network’s performance. The Dice 
coefficient measures the similarity between segmentation masks, where 1 indicates perfect overlap and 0 
indicates no overlap. Reproduced via Creative Commons License from.32

Figure 7. (b) Visualization of centroid construction. T1 axial and T1 sagittal MRI slices were input into their 
respective V-Net to generate inferred segmentation masks of the vertebral bodies, intervertebral discs, and 
paraspinal muscles. After postprocessing, centers of mass were computed on each segmentation mask to 
calculate the position of volume-wise centroids for each vertebral body and intervertebral disc and slice-
wise centroids for each paraspinal muscle. These centroids were then converted to patient-based space, 
yielding a three-dimensional atlas of the lumbar spine for further biomechanical modeling. Reproduced via 
Creative Commons License from.32 MRI, magnetic resonance imaging.
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language, leading to reports that lack the 
nuanced communication often necessary 
between radiologists and referring physi-
cians. Radiologists should view AI in report 
generation as a complementary tool that can 
assist with the reporting process but not as 
a replacement for the expert interpretation 
provided by a trained radiologist.

Considerations

Challenges defining ground truth data, 
benchmarks, and radiologists’ availabilities

To achieve the highest yield from AI tech-
nologies, it is imperative to have large and 
reliable ground truth datasets for training, 
validation, and testing. Ideally, these should 
be from several different sources and repre-
sentative of diverse communities accessible 
by non-radiologists, such as AI researchers, 
engineers, and data scientists.48 The recent 
increase in the availability of such publicly 
available medical image banks and large-
scale international AI challenges have cata-
lyzed progress in the field, leading to the 
development of AI algorithms capable of 
handling different tasks, such as classifica-
tion, detection, or segmentation, in different 
modalities.49-51 The ground truth required for 
the current supervised AI models requires a 
labor- and time-intensive curation process 
for ideal workflow and to ensure the gener-
alizability of a model. Moreover, this process 
is subject to regulatory constraints, commer-
cial and operational pressures, as well as epis-
temic differences and limits of labeling.52,53 
Annotated images and their respective radi-
ology reports are available in hospital data-
bases but due to ethical reasons are not read-
ily available to developers. It is important to 
follow the regulatory procedures and obtain 
approval from responsible committees to en-
sure an ethical approach when accessing and 
sharing this data between developers.52

Radiologists rely on visual detection, 
pattern recognition, memory, and cognitive 
reasoning to consolidate a final interpreta-
tion while making decisions.4 Radiologists’ 
errors have a vast impact on medical errors, 
which constitute the third most common 
cause of death in the USA, following can-
cer and heart disease.54,55 The error rate is 
approximately 4% in clinical radiology prac-
tices, which translates into 40 million er-
rors out of 1 billion worldwide radiographs 
annually.4 Of particular importance, the 
distinction between an “error” and “obser-
vation variation” is highly relevant when cre-
ating such datasets. Imaging findings alone, 
without clinical information, are frequently 

Figure 7. (c) Visualization of centroid construction. T1 axial and T1 sagittal magnetic resonance imaging 
slices were input into their respective V-Net to generate inferred segmentation masks of the vertebral 
bodies, intervertebral discs, and paraspinal muscles. After postprocessing, centers of mass were computed 
on each segmentation mask to calculate the position of volume-wise centroids for each vertebral body 
and intervertebral disc and slice-wise centroids for each paraspinous muscle. These centroids were then 
converted to patient-based space, yielding a three-dimensional atlas of the lumbar spine for further 
biomechanical modeling. Reproduced via Creative Commons License from.71

Figure 8. The authors used the Grad-CAM model interpretation technique to obtain a class discriminative 
localization map for each prediction. They first computed the gradient of the class of interest (before the 
“softmax” function) regarding feature maps of the last convolutional layer in the Resnet. These gradients 
flowing back were globally average-pooled to obtain the neuronal importance weights for the target class. 
A heat map of location importance was then up-sampled to match the image size and overlaid on the 
input image. The authors then leveraged the invertible property of their spherical transformation method 
to generate articular surface importance heat maps for model interpretation for each bone and each single 
biomarker. This process was performed on the first timepoint of every unique patient in the hold-out test set 
(n = 875) and is illustrated for the femur. Reproduced via Creative Commons License from.73
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not enough to definitively indicate a spe-
cific diagnosis. Consequently, interpreting 
radiologic studies is typically not a straight-
forward binary process of discriminating 
normal from pathologic entities. Profession-
al acceptability lies on an arbitrary scale, be-
tween an obvious error and the unavoida-
ble difference of opinion in interpretation.56 
This is particularly of concern given that 
most clinical AI applications are developed 
using data generated by “expert radiolo-
gists.” Thus, these models are subjected to 
many kinds of human errors and biases and 
it falls on us humans to be cognizant of ine-
quality, data availability, and privacy, ethical 
and medicolegal concerns with these rapid-
ly evolving technologies.57,58 

The top five most influential radiology 
societies from the USA, Canada, Europe, Aus-
tralia, and New Zealand recently released a 
joint statement on potential practical and 
ethical concerns in deploying and integrat-
ing AI in radiology practices. The key take-
home statements, which also apply spe-
cifically to MSK radiology, include a strong 
recommendation for rigorous monitoring of 
its uses and safety in clinical practice, close 
collaboration between developers, end-us-
ers, and regulators, and strict adherence to 
all the regulatory steps from the develop-
ment to deployment and integration in the 
clinical workflow.59 Radiologists in particular 
should be aware of automation bias as a po-
tential source of error when working with AI 
tools in decision making.60

Model deployment

Deploying and maintaining AI models re-
quires a robust infrastructure that addresses 
computational needs for both initial deploy-
ments using off-the-shelf pre-trained mod-
els and more advanced adaptations through 
fine-tuning. Most radiologists and clinical 
departments start with off-the-shelf pre-
trained AI models. These models are devel-
oped on large, general datasets and can be 
used directly for common imaging tasks with 
minimal setup and without extensive cus-
tomization. Standard computing hardware, 
including central processing units or mod-
est graphics processing units (GPUs), can be 
used to run these models, making them ac-
cessible to most clinical environments. 

Fine-tuning is necessary when adapting 
a pre-trained model to specific datasets or 
unique clinical scenarios in MSK radiology. 
This involves modifying the pre-trained 
model’s parameters to better fit the par-
ticular characteristics of the new data, 

such as custom protocols for rare condi-
tions, integrating specific patient demo-
graphics, or adapting models to unique 
imaging modalities or contrasts, improv-
ing the performance and relevance of the 
model. From a computational perspective, 
fine-tuning is less resource-intensive than 
training a model from scratch, as the mod-
el has already learned useful features from 
the initial large-scale dataset. This can be 
particularly beneficial in medical imaging, 
where annotated datasets are often limited 
and expensive to acquire. For instance, a 
model initially trained on a large dataset of 
general MRI images can be fine-tuned on a 
smaller dataset of specific MSK conditions. 
Studies using this approach have been re-
viewed by Cheplygina et al.61, demonstrat-
ing improved performance on the tasks of 
interest. However, higher computational 
resources than those used for deployment 
are still needed for the fine-tuning process 
to handle the training workload. High-per-
formance GPUs or tensor processing units 
are resources that can accelerate the pro-
cessing of large datasets and complex mod-
el architectures during the training phase of 
fine-tuning. Cloud-based solutions with an 
environment that is secure and compliant 
with the Health Insurance Portability and 
Accountability Act also offer scalable re-
sources that can be dynamically adjusted 
based on the computational load, making 
them ideal for training and deploying mod-
els without the need for local high-perfor-
mance hardware.

Successful deployment of AI tools re-
quires seamless integration into clinical 
workflows, which may involve Digital Im-
aging and Communications in Medicine 
(DICOM) standards and interoperability with 
various Picture Archiving and Communica-
tion System software, supported by robust 
infrastructure capable of handling ongoing 
model monitoring and updates to ensure 
sustained performance over time, adjust for 
any data shifts or incorporate new data, and 
maintain model relevance and performance.

Equitable medical artificial intelligence

The development and deployment of AI 
technologies in MSK radiology must be pri-
oritized for fairness and justice. Algorithms 
should aim to mitigate biases, ensure acces-
sibility to all demographic groups, and de-
liver personalized care tailored to individual 
needs, irrespective of socio-economic status 
or background. Doo and McGinty62 argue 
that bias in radiology AI stems from various 
stages of model design encompassing the 

selection of training data, algorithm de-
velopment, deployment, and performance 
assessment. These biases, in turn, have re-
percussions on patient care and health out-
comes. Notably, there is a lack of standard-
ized protocols for demographic labeling in 
AI. Existing datasets often blur distinctions 
between crucial identifiers, such as sex and 
gender, or oversimplify complex racial cat-
egories, leading to distorted outcomes and 
predictive inaccuracies. Consequently, AI 
models trained on such biased datasets tend 
to reinforce preexisting biases, contributing 
to unintended consequences. 

When contemplating advanced health-
care imaging within the AI landscape, a 
fundamental query arises: Is it possible to 
completely anonymize (deidentifying with-
out any possibility of reidentification) data?63 
At first glance, the task appears simple: se-
lectively erase or encode identifiers within 
the metadata headers of images. Despite 
the widespread use of the DICOM standard 
for radiologic data, an increasing number 
of exceptions complicate efforts to estab-
lish standardized procedures. Recently, the 
progress in facial recognition technology 
has raised concerns about the potential for 
matching images from CT or MRI scans with 
individuals’ photographs. Consequently, it 
has become standard practice in medical 
imaging research to alter images using de-
facing or skull-stripping algorithms to elim-
inate facial features. Unfortunately, such al-
terations can undermine the generalizability 
of ML models developed using such data.64 
The topic is extremely complicated in terms 
of types of biases and there are several rem-
edies, which are almost impossible to com-
prehensively cover in the scope of the article. 
However, it is important to introduce the 
concepts of bias and equitable medical AI 
in MSK radiology and something to be con-
scious of while utilizing the AI tools.64 Some 
of the most common issues with MSK imag-
ing in AI and potential solutions to those are 
listed in Table 3. 

Conclusion: current trends and future di-
rections

Integration of AI with other emerging 
technologies, such as augmented reality 
and virtual reality is enabling more immer-
sive and interactive visualization of medical 
images. New tools may facilitate better sur-
gical planning, training, and intraoperative 
guidance. Additionally, AI-assisted tools 
have a niche role in aiding radiologists who 
are training and provide an avenue for ad-
ditional diagnostic opinion where multiple 
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radiologists reading images is not feasible.  
Protocolling, which involves choosing the 
right imaging protocol to obtain the most 
diagnostic images for each patient, is su-
pervised by a radiologist and is particularly 
important in MSK MRI applications where 
imaging protocols frequently require pa-
tient-specific tailoring. The limited number 
of research reports, using CNN and natural 
language classifier-based algorithms, have 
demonstrated encouraging outcomes.65-67 
Nevertheless, it is important to acknowledge 
the diversity of MSK imaging protocols for a 
wide spectrum of clinical scenarios, where 
these tools should be fine-tuned and ad-
vanced by taking medical history, prior im-
aging studies, scanner-specific data, contrast 
information, and radiation exposure dose 
into account.68 AI can also offer dual working 
solutions for scheduling, by reducing both 
MRI times and waiting times by identifying 
no-shows or canceled appointments ahead 
of time.69 Finally, radiology reports are the fi-
nal product of radiologists and are the means 
of communication of findings between phy-
sicians. ML can help generate decision-mak-
ing algorithms as a support system based 
on the available information on the patient’s 
medical background.68,70 Conversely, ML-
based NLP can be a powerful tool to harness 
data from radiology reports and is currently 
being investigated.9 
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