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Diagnostic accuracy of convolutional neural network algorithms to 
distinguish gastrointestinal obstruction on conventional radiographs in 
a pediatric population 

PURPOSE
 

Gastrointestinal (GI) dilatations are frequently observed in radiographs of pediatric patients who 
visit emergency departments with acute symptoms such as vomiting, pain, constipation, or diar-
rhea. Timely and accurate differentiation of whether there is an obstruction requiring surgery in 
these patients is crucial to prevent complications such as necrosis and perforation, which can lead 
to death. In this study, we aimed to use convolutional neural network (CNN) models to differentiate 
healthy children with normal intestinal gas distribution in abdominal radiographs from those with 
GI dilatation or obstruction. We also aimed to distinguish patients with obstruction requiring sur-
gery and those with other GI dilatation or ileus. 

METHODS
 

Abdominal radiographs of patients with a surgical, clinical, and/or laboratory diagnosis of GI diseas-
es with GI dilatation were retrieved from our institution’s Picture Archiving and Communication Sys-
tem archive. Additionally, abdominal radiographs performed to detect abnormalities other than GI 
disorders were collected to form a control group. The images were labeled with three tags accord-
ing to their groups: surgically-corrected dilatation (SD), inflammatory/infectious dilatation (ID), and 
normal. To determine the impact of standardizing the imaging area on the model’s performance, 
an additional dataset was created by applying an automated cropping process. Five CNN models 
with proven success in image analysis (ResNet50, InceptionResNetV2, Xception, EfficientNetV2L, 
and ConvNeXtXLarge) were trained, validated, and tested using transfer learning. 

RESULTS
 

A total of 540 normal, 298 SD, and 314 ID were used in this study. In the differentiation between 
normal and abnormal images, the highest accuracy rates were achieved with ResNet50 (93.3%) and 
InceptionResNetV2 (90.6%) CNN models. Then, after using automated cropping preprocessing, the 
highest accuracy rates were achieved with ConvNeXtXLarge (96.9%), ResNet50 (95.5%), and Incep-
tionResNetV2 (95.5%). The highest accuracy in the differentiation between SD and ID was achieved 
with EfficientNetV2L (94.6%). 

CONCLUSION
 

Deep learning models can be integrated into radiographs located in the emergency departments 
as a decision support system with high accuracy rates in pediatric GI obstructions by immediately 
alerting the physicians about abnormal radiographs and possible etiologies.  

CLINICAL SIGNIFICANCE
 

This paper describes a novel area of utilization of well-known deep learning algorithm models. Al-
though some studies in the literature have shown the efficiency of CNN models in identifying small 
bowel obstruction with high accuracy for the adult population or some specific diseases, our study 
is unique for the pediatric population and for evaluating the requirement of surgical versus medical 
treatment.  
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The imaging of the gastrointestinal (GI) 
system is challenging in children, and 
often, the initial modality of choice 

is either an abdominal radiograph or ultra-
sound, both in the emergency and outpa-
tient settings. Abdominal radiography is 
cheap, widely available, exposes less radia-
tion compared with computed tomography 
(CT), and provides specific appearances for 
some pediatric conditions such as duodenal 
atresia and necrotizing enterocolitis (NEC).1 
The common causes of GI obstructions in 
pediatric patients are more varied and dif-
ferent than in adults and often require ded-
icated radiological evaluation to recognize 
peculiar imaging features.2 The bowel can be 
obstructed or dilated by a wide range of dis-
eases classified as congenital, developmen-
tal, inflammatory, infectious, and neoplastic 
lesions.3 Delay in the diagnosis and surgical 
management of such pediatric acute bowel 
obstruction increases the risk of bowel ne-
crosis, perforation, and death. Therefore, ac-
curate diagnostic management is crucial to 
improve patient outcomes.4 Previous studies 
in adult populations have revealed that the 3 
most sensitive radiographic signs for bowel 
obstruction are air-fluid levels in loops of the 
bowel wider than 2.5 cm, 2 or more air-fluid 
levels, and multiple air-fluid levels within 1 
loop of the bowel differing 5 mm.2 

In recent years, there has been a grow-
ing number of studies on integrating artifi-
cial intelligence (AI) as a diagnostic support 
model into image-based medical fields such 
as radiology and pathology. Artificial neural 
networks have become the most preferred 
models for image classification among the 
subfields of AI due to their high accuracy 
rates.5

Convolutional neural network (CNN), a 
deep artificial neural network, possesses the 
ability to distinguish and classify images by 
extracting and comparing specific features 

from them. However, the main limitation of 
CNNs is their need for large datasets for train-
ing. The capacity of a CNN trained on a large 
dataset can be transferred to differentiate 
similar images.6 With the proliferation of dig-
ital radiography and Picture Archiving and 
Communication Systems (PACS), significant 
advancements have been made in acquiring 
radiographic data in recent years. Although 
radiography involves single-section and 
two-dimensional imaging, CT and magnetic 
resonance imaging provide multi-sectional 
and three-dimensional imaging. Therefore, 
radiographs can be processed with simpler 
deep-learning models. 

In daily practice, many abdominal ra-
diographs are performed on children in 
emergency rooms and outpatient clinics. In 
Turkey, most of these are not evaluated by 
radiologists but by emergency or outpatient 
physicians under time constraints. According 
to a report prepared by the Turkish Society 
of Radiology instead of Radiology Associa-
tion in 2018, the number of radiologists per 
100,000 people in Turkey was 5, whereas 
this number was 2–3 times higher in Orga-
nization for Economic Co-operation and 
Development countries.7 Due to the lack of 
sufficient time for evaluating radiographs or 
the inexperience of the evaluating physician, 
additional tests may be unnecessarily re-
quested for patients with false-negative eval-
uations, or patients with a condition may be 
incorrectly deemed normal and sent home. 
Conversely, unnecessary treatments or surgi-
cal interventions may be performed on pa-
tients with false-positive evaluations. Since 
children often cannot accurately express 
their complaints and because laboratory 
findings can change rapidly, radiological ex-
aminations hold even greater importance.4

Therefore, if the radiographs taken in the 
emergency room are classified by a CNN 
model integrated into the PACS system and 
presented to the relevant physician, it can 
enable more careful evaluation by the phy-
sician. 

This study aims to retrain current CNN 
models on abdominal radiographs and as-
sess which models are more successful in 
classifying normal and pathological radio-
graphs. It also proposes differentiating be-
tween pathological radiographs that resolve 
with medical treatment (infectious) and 
those requiring surgical intervention.

Methods
Institutional review board approval was 

obtained from the Diyarbakır Gazi Yaşargil 

Training and Research Hospital Non-Inter-
ventional Clinical Research Ethics Commit-
tee (decision no: 2022/108, decision date: 
10.06.2022) for this study’s retrospective data 
collection and analysis. Informed consent 
was waived because of the retrospective na-
ture of the study.

Image acquisition 

After obtaining the approval of the ethical 
committee, abdominal radiographs taken in 
the outpatient clinic and emergency depart-
ment between January 1, 2019, and June 1, 
2022, were reviewed using the radiology 
PACS archive of our institution. They were 
included if the patients had multiple images 
within the same disease course and before 
the surgery. X-ray devices used in the outpa-
tient clinic and emergency department were 
single-tube Jumong model digital X-ray im-
aging systems (SG Healthcare Co, Gyeong-
gi-Do, South Korea). Automatic exposure 
control (AEC) sensors were used during 
imaging, and dose parameters for each im-
aging were adjusted accordingly. Shielding 
was not used to avoid overexposure due to 
AEC measurements. Peak tube voltage (kVp), 
tube current (mA), exposure time (msec), and 
dose area product (DAP) were recorded for 
each examination. Due to vast body size vari-
ations in the study cohort (0–18 years), peak 
tube voltage was changed between 80,100 
and 120 kVp according to tissue thickness, 
requiring more photon penetration. For the 
routine posteroanterior erect abdominal 
radiograph performed in the outpatient 
clinic and emergency department, the pa-
tient-tube distance was 110 cm.

The images were retrieved for the study 
using JPEG compression. For comparison, 
a control group was formed from patients 
with normal GI findings on abdominal radio-
graphs, who were imaged for other reasons, 
such as kidney stones, with a balanced age 
distribution from 0 to 18 years. The dataset 
consisted of three main groups: (1) patients 
with GI obstruction requiring surgical inter-
vention [surgically-corrected dilatation (SD)], 
(2) patients with bowel dilatation/ileus treat-
ed without surgery [inflammatory/infectious 
dilatation (ID)], and (3) a normal control 
group. The age and sex characteristics of the 
patients and the diagnoses of the diseases 
for groups with pathological findings were 
recorded. The first group requiring surgery 
was diagnosed surgically. While labeling the 
second group, if examinations remained in-
determinate, the cases were discussed by 
an experienced pediatric radiologist (with 7 
years of experience) and the referring pedi-

Main points

•	 Pre-trained convolutional neural network 
models can be accurately used in abdomi-
nal radiographs with the transfer learning 
method.

•	 Fine-tuning should be performed to im-
prove the performance of the model and to 
decrease the validation and training loss.

•	 The automated cropping process signifi-
cantly improves the performance of all 
models, probably due to factors such as the 
non-standard nature of the radiographs tak-
en under emergency and outpatient condi-
tions, improper positioning, and inappropri-
ate adjustment of the imaging area. 
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atrician. Six cases that remained indetermi-
nate after enhanced clinical-radiological re-
view were excluded, as no meaningful label 
could be assigned. 

Consequently, a total of 612 radiographs 
with the findings of bowel dilatation or ob-
struction were included. For the first group 
(patients who underwent surgery), 298 im-
ages from 107 patients were obtained from 
the archive, and for the second group (pa-
tients who did not require surgery), 314 im-
ages from 189 patients were obtained. For 
comparison, a control group of 540 normal 
abdominal radiographs, 1 for each case, was 
created, considering a balanced age distribu-
tion between 0 and 18 years. The flowchart 
of the study is presented in Figure 1. 

Training, testing dataset, and preprocess-
ing 

Images were retrieved from the PACS sta-
tion with a resolution of 1,040 × 624 pixels 
and down-sampled by bicubic interpolation 
automatically in the CNN to match the input 
layers. Afterward, 32 batches, each including 
36 images, were composed of 1,152 images. 
Each batch was split into training, validation, 
and test sets using a ratio of 28:3:5, respec-
tively. This ratio was designed to maintain a 
sufficient training dataset while providing 
adequate statistical power for the testing 
dataset. A test set sample size of 160 en-
abled a statistical power of 0.8 for detecting 
an area under the curve (AUC) of 0.65 with 
a type 1 error of 0.025.8 Data augmentation 
was performed on the training dataset with 
horizontal flipping and rotation by Keras li-
brary. The images formed with data augmen-
tation would be similar to those not taken in 
the correct position due to patient rotation 
during the shooting or sent incorrectly to the 
PACS system. This approach aims to provide 
flexibility for the model to evaluate images 
that are not properly positioned (Supple-
mentary Figure 1). 

To determine the impact of standardiz-
ing the imaging area on the model’s perfor-
mance, an additional dataset was created by 
applying an automated cropping process to 
the data using a cropping code set to remove 
rows or columns from all edges until a white-
toned pixel was found. During the automat-
ed cropping process, some images had data 
labels on the edges of the image, causing the 
cropping to stop before the model reached 
the image (Figure 2a-d). This situation repre-
sented a limitation of the model compared 
with manual cropping. Since this study 
aimed to provide the classification result di-

rectly to the physician via automated prepro-
cessing and model analysis of the image ob-
tained from X-ray imaging, manual cropping 
was not preferred. 

Neural networks training and testing 

All CNN training, testing, and other pro-
cesses were performed using the Keras 2.1.5 
library with TensorFlow 1.7 as the backend 
framework in Python (version 3.7.3), and 
Google Colab was used as a notebook ser-
vice provider with its integrated graphics 
processing units.9-11

Five CNNs used in this study were public-
ly available and pre-trained on the ImageN-
et data set: ResNet50, InceptionResNetV2, 
Xception, EfficientNet, and ConvNeXt.12-17 

The architecture of the models is briefly 
described in Supplementary Figure 2. The 
background of the networks was developed 
to detect everyday objects such as vehicles, 
flowers, or animals, but the top layers were 
completely new and acquired their param-
eters based on the radiographs used in the 
training database, called the transfer learn-
ing method. Since the datasets on which 
CNN models were pre-trained contained a 
large amount of data, during training with 
our smaller dataset, the process of determin-
ing the filter weights for feature extraction 
was limited to the first few convolutional lay-
ers (usually the first three), and the training 
of the last layers did not occur.18 To overcome 
this, a particular process called fine-tuning 
was applied, and the layers close to the input 

Figure 1. Flow diagram of the study. CNN, convolutional neural network; PACS: Picture Archiving and 
Communication Systems.

Figure 2. Example of before (a) and after (b) successful automated cropping to remove unnecessary parts 
and suboptimal cropping (c, d) due to white pixels of a label at the right lower corner of the image. 

a

c

b

d
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were frozen to ensure that the weights for 
feature extraction in the subsequent layers 
were determined. Fine-tuning was routinely 
applied, especially in transfer learning meth-
ods used in image analysis, and it improved 
the model’s performance. Although epoch 
durations were longer compared with the 
standard training process, a significant de-
crease in training and validation errors was 
achieved with fewer epochs (Supplementary 
Figure 3). 

The five models used in the experiments 
were trained for 100 epochs during the train-
ing phase. To enhance performance during 
transfer learning and to allow the models 
trained on another dataset to adapt to the 
features of our data, an additional 20 epochs 
were run for fine-tuning. In this study, the 
models were first presented with original 
data and then cropped data from the nor-
mal control and abnormal patient groups. 
All models were tested on 224 images after 
training, and their success was evaluated 
using performance metrics. Finally, to de-
termine which diseases, ages, and sexes the 
misdiagnosed cases (false positives or false 
negatives) belonged to, the dataset was ana-
lyzed using the most successful model. 

Statistical analysis 

The mean and standard deviation values 
for age and the median and quartiles were 
presented. The descriptive statistics of the 
pathological groups were calculated. Pear-
son’s chi-squared test was used to compare 
gender data. Kolmogorov–Smirnov test 
showed that the age data did not follow a 
normal distribution (P < 0.001 for all groups). 
The median and interquartile ranges were 
presented for non-normally distributed dose 
parameters. A non-parametric Mann–Whit-
ney U test was applied since the pathological 
groups did not show a normal distribution. 
Statistical analyses were performed using 
the IBM SPSS version 23.0 software package 
(IBM Corporation, Armonk, NY, USA). A single 
receiver operating characteristic (ROC) curve 
and cut-off analysis were used for the inter-
nal test, whereas two ROC curves with inde-
pendent groups were designed to compare 
the external and internal validation tests. 
Two-tailed P values < 0.05 were considered 
statistically significant. After completing the 
training phase, the models were tested using 
the dataset created for testing. The perfor-
mance of the models was measured by met-
rics such as accuracy, precision, sensitivity, 
specificity, F1 score, and the AUC. 

Results 
The age and sex distribution of the three 

groups within the dataset are presented in 
Table 1. No significant difference was found 
between the two patient groups regarding 
age (P = 0.928). However, there were more 
boys in the SD group than in the ID group (P 
< 0.001). Regarding dose parameters, 725 ex-
aminations were performed with 80 kVp, 338 
with 100 kVp, and 89 with 120 kVp. The me-
dian tube current was 320 mA (interquartile 
range 80). The mean (± standard deviation) 
exposure time was 37.22 ± 7.51 milliseconds, 
and the median DAP was 165 mGy·cm2 (inter-
quartile range: 349). In the SD group, a total of 
16 different causes of obstruction were iden-
tified. The most prevalent cause, ileus due to 
postoperative adhesions, was observed in 83 
radiographs of 27 patients (27.9%). This was 
followed by complicated appendicitis, seen 
in 67 radiographs of 30 patients (22.5%), and 
NEC, found in 35 radiographs of 11 patients 
(11.7%). It is worth noting that some cases of 
ileus due to postoperative adhesions were 

observed during follow-up after surgeries 
of patients with other etiologies, which is 
why the total number of cases appears high-
er than the total number of patients in this 
group when the cases from both groups are 
combined. The age and sex distribution ac-
cording to the types of diseases is presented 
in Table 2. 

NEC, hypertrophic pyloric stenosis, meco-
nium ileus, Hirschsprung’s disease, duodenal 
atresia/stenosis, and inguinal hernia cases 
are observed in the neonatal and infant pe-
riods, whereas abscess/peritonitis secondary 
to intraperitoneal catheter and intussuscep-
tion cases occur in early childhood. Compli-
cated appendicitis and Crohn’s disease are 
predominantly seen in the group aged over 
10 years. The disease groups with the broad-
est age distribution are also the two most 
common diseases: ileus due to postoperative 
adhesions and complicated appendicitis. 
Among the common diseases, groups with 
similar ages were compared statistically us-
ing the Student’s t-test. The ages of patients 

Table 1. Age and sex distribution of the study groups and the control group

Healthy control group SD group ID group

Sex [male (%)/female (%)] 262 (48.5)/278 (51.5) 232 (77.5)/66 (22.1) 180 (57.3)/134 (42.7) 

Age (mean ± standard 
deviation), years 7.29 ± 5.05 5.47 ± 5.82 4.22 ± 4.44

Age [median (interquartile 
ranges)], years 6.5 (3.1–11.3) 3 (0.3–10.0) 2.1 (1.3–6.0)

SD, surgically-corrected dilatation; ID, inflammatory/infectious dilatation.

Table 2. Number, age, and sex features of patients within the surgically corrected 
obstruction group

Diagnosis Number of cases/
number of images

Sex: male (%)/
female (%) 

Age: mean ± standard 
deviation in years

Ileus due to postoperative 
adhesion 27/83 22 (81.5)/5 (18.5) 6.48 ± 5.32

Complicated acute appendicitis 30/67 22 (73.3)/8 (26.7) 11.33 ± 4.75

Necrotizing enterocolitis 11/35 5(45.5)/6 (54.5) 0.39 ± 0.53

Hypertrophic pyloric stenosis 12/19 12 (100)/0 0.11 ± 0.06

Hirschsprung’s disease 7/15 6 (85.7)/1 (14.3) 1.02 ± 1.38

Abscess/peritonitis secondary to 
intraabdominal catheter 5/15 4 (80)/1 (20) 5.13 ± 6.08

Meconium ileus or meconium plug 
syndrome 5/12 4 (80)/1 (20) 0.34 ± 0.27

Duodenal atresia or stenosis 2/11 1 (50)/1 (50) 1.15 ± 0.10

Intussusception 9/9 5 (55.6)/4 (44.4) 3.18 ± 4.41

Complicated inguinal hernia 4/8 4 (100)/0 0.95 ± 0.78

Complicated Crohn’s disease 2/8 2 (100)/0 11.89 ± 1.48

Midgut volvulus 3/6 3 (100)/0 1.80 ± 2.26

Other 4/9 4 (100)/0 6.87 ± 4.79
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with complicated appendicitis were found to 
be significantly higher than those with ileus 
due to postoperative adhesions (P < 0.001), 
and the ages of patients with NEC were sig-
nificantly higher than those with hypertro-
phic pyloric stenosis (P = 0.003). No signifi-
cant difference was found between cases of 
postoperative adhesions and catheter infec-
tions (P = 0.379) or between Hirschsprung’s 
disease and duodenal atresia/stenosis (P = 
0.719). 

In the third group, which included cases 
of non-ileus, no infectious agent was detect-
ed in 142 patients, from whom 231 (73.6%) 
radiographs were obtained. In 41 patients 
(68 radiographs, 21.7%), rotavirus was de-
tected in 2 patients (3 radiographs, 1%), 
adenovirus antigen in 2 patients (6 radio-
graphs, 1.9%), and amoeba in the stool of 2 
patients (6 radiographs, 1.9%). In 2 patients 
with 6 radiographs (1.9%), GI involvement 
due to multisystem inflammatory syndrome 
secondary to coronavirus disease-2019 was 
diagnosed. When comparing the ages of the 
rotavirus cases and other cases, it was found 
that rotavirus cases were significantly higher 
in the younger age groups (P < 0.001). 

All models were tested separately on 224 
images using both the original and cropped 
datasets after training. The confusion matri-
ces of the models are presented in Table 3, 
and the performance metrics are present-
ed in Table 4. Although the highest perfor-
mance metrics of the models were observed 
in different rankings across different data-
sets, they were generally achieved with Res-
Net50 on raw data, EfficientNetV2L between 
pathological groups, and ConvNeXtXLarge 
on cropped data and overall. The pixels with 
the most weight in classification, as indicat-
ed by the gradient-weighted class activation 
map applied to some data in the analysis of 
the Xception model, are shown in Figure 3. 

Finally, to determine which diseases and 
ages the misclassified cases (false positives 
or false negatives) belonged to, our dataset 
was analyzed using the ConvNeXtXLarge 
model, which had the highest F1 score. The 
model was run 3 times using 224 images 
randomly distributed across 7 packages in 
each analysis. Four images with SD and six 
with ID were labeled as false negatives in 
the three-model analyses. In the normal con-
trol group, 33 images were classified as false 
positives across the 3 analyses. Examples of 
patients who were classified as abnormal but 
were healthy, according to the model analy-
sis, are presented with their ages and sexes 
in Supplementary Figure 4. The cases labeled 

as normal despite being in the SD group are 
presented in Figure 4. Since the false nega-
tive cases occurred in three different disease 
groups and involved common diseases in the 
dataset, we could not conclude that a specif-
ic disease group was undetectable. 

Discussion 
Very few studies utilize deep learning ap-

plications on abdominal radiographs, and 
there is even less literature regarding the 
pediatric population.4,19-21 Studies on X-rays 
in the literature primarily focus on chest ra-
diography, mainly due to the large volume 
of accessible data.22-25 Our study demonstrat-
ed that in classifying normal and abnormal 

radiographs, an accuracy above 90% was 
achieved with the ResNet50 (93.3%) and 
InceptionResNetV2 (90.6%) CNN models. 
After applying the cropping preprocessing 
step to the same data groups, an accuracy 
above 90% was achieved with EfficientNet-
V2L (94.6%), and an accuracy above 95% 
was reached with ResNet50 (95.5%), Incep-
tionResNetV2 (95.5%), and ConvNeXtX-
Large (96.9%). In the analysis conducted on 
cropped images to distinguish surgically cor-
rected GI obstruction from other GI dilations, 
an accuracy above 90% was achieved with 
InceptionResNetV2 (90.2%), EfficientNetV2L 
(94.6%), and ConvNeXtXLarge (91.1%). It is 
evident that the cropping preprocessing 
step significantly impacts the performance 

Table 3. Confusion matrices of the convolutional neural networks’ test results used in the 
study

CNN model Data type Labels
Actual

Normal (or 
SD group)

Abnormal (or ID 
group)

Classification results 
with ResNet50 CNN 
model

Raw images

Predicted

Normal 109 15

Abnormal 0 100

Cropped images
Normal 109 7

Abnormal 3 105

Cropped images
SD group 117 4

ID group 21 82

Classification 
results with 
InceptionResNetV2 
CNN model

Raw images 

Predicted

Normal 103 3

Abnormal 18 100

Cropped images
Normal 119 1

Abnormal 9 95

Cropped images
SD group 106 6

ID group 16 96

Classification results 
with Xception CNN 
model

Raw images

Predicted

Normal 120 10

Abnormal 28 66

Cropped images
Normal 100 17

Abnormal 13 94

Cropped images
SD group 104 21

ID group 7 92

Classification results 
with EfficientNetV2L 
CNN model

Raw images

Predicted

Normal 84 28

Abnormal 0 112

Cropped images
Normal 118 0

Abnormal 12 94

Cropped images
SD group 108 5

ID group 7 104

Classification 
results with 
ConvNeXtXLarge 
CNN model

Raw images

Predicted

Normal 102 6

Abnormal 17 99

Cropped images
Normal 121 3

Abnormal 4 96

Cropped images
SD group 107 7

ID group 13 97

CNN, convolutional neural network; SD, surgically-corrected dilatation; ID, inflammatory/infectious dilatation.
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of all models. This improvement is likely due 
to factors such as the non-standard nature 
of radiographs taken under emergency and 
outpatient conditions, improper positioning, 
inappropriate adjustment of the imaging 
area, and the failure to remove contrast-in-
ducing items from patients during imaging. 

Abdominal radiographs are generally 
the first preferred method for GI diseases 
due to their affordability, widespread avail-
ability, rapid application and interpretation 
(especially with digital radiographs), and 
ability to comprehensively show intestinal 
gas distribution. Radiography is superior to 
ultrasound, particularly for diagnosing GI ob-
structions.26 Typical imaging findings are ob-
served in diseases such as NEC and duodenal 
atresia, which are seen in the neonatal and 
infant periods. Additionally, in patients with 
acute severe clinical symptoms where bow-
el perforation (rupture) is suspected, radio-
graphs can reveal free air in the abdominal 
cavity. However, the sensitivity of abdominal 
radiographs in children with abdominal pain 
is relatively low, with the rate of pathological 
findings reported between 2% and 20%.26 
Abdominal radiographs in newborns and 
young children are usually taken while the 
patient is lying down. In older children, an 
upright abdominal radiograph may better 
display air-fluid levels and bowel loop disten-
tion, especially in conditions where peristal-
sis is impaired. In some cases, lateral decubi-
tus radiographs are taken by positioning the 
patient on their side to show air-fluid levels, 
free fluid, or free air in the abdomen. 

The following studies stood out when re-
viewing previous deep-learning research in 
the literature on diagnosing GI diseases us-
ing abdominal radiographs. In the study by 
Kwon et al.21, 11,384 abdominal radiographs 
(1,449 with intussusception and 9,935 with-
out) were retrieved from three hospitals to 
detect intussusception. Diagnosing intus-
susception from abdominal radiographs is 
challenging and requires expertise. There-
fore, the diagnosis is typically made by 
ultrasound. The interobserver agreement 
among radiologists with limited experience 
in abdominal radiographs is less than 50%.27 
In the study by Kwon et al.21, for binary clas-
sification, the CNN model used was ResNet. 
The average sensitivity achieved was 81.6%, 
with a specificity of 92.5%. The highest ac-
curacy reported was 76%, the lowest was 
73%, and the average was 74%. In our study, 
an analysis of the SD cases classified as false 
negatives revealed that two of the four cas-
es were complicated appendicitis, one was 
bowel obstruction (ileus due to postopera-

tive adhesions), and one was Hirschsprung’s 
disease. Notably, no misclassification was de-
tected in intussusception cases. Additionally, 
an accuracy rate of 93.3% was achieved with 
the ResNet50 model in our study, making it 

the model with the highest accuracy on raw 
data. 

In another study on small bowel obstruc-
tion, a total of 3,663 upright abdominal ra-

Table 4. Performance metrics of the convolutional neural network models according to 
datasets 

CNN model Dataset Accuracy Specificity Sensitivity F1 score

ResNet50

Normal vs. abnormal (raw 
data) 0.933 1.000 0.869 0.930

Normal vs. abnormal 
(cropped data) 0.955 0.973 0.938 0.955

SD vs. ID group 0.889 0.848 0.953 0.868

InceptionResNetV2

Normal vs. abnormal (raw 
data) 0.906 0.851 0.970 0.905

Normal vs. abnormal 
(cropped data) 0.955 0.930 0.990 0.950

SD vs. ID group 0.902 0.869 0.941 0.897

Xception

Normal vs. abnormal (raw 
data) 0.839 0.811 0.868 0.776

Normal vs. abnormal 
(cropped data) 0.866 0.885 0.847 0.862

SD vs. ID group 0.875 0.937 0.814 0.868

EfficientNetV2L

Normal vs. abnormal (raw 
data) 0.875 1.000 0.800 0.889

Normal vs. abnormal 
(cropped data) 0.946 0.908 1.000 0.940

SD vs. ID group 0.946 0.939 0.954 0.945

ConvNeXtXLarge

Normal vs. abnormal (raw 
data) 0.897 0.857 0.943 0.896

Normal vs. abnormal 
(cropped data) 0.969 0.968 0.970 0.965

SD vs. ID group 0.911 0.892 0.933 0.907

CNN, convolutional neural network; SD, surgically-corrected dilatation; ID, inflammatory/infectious dilatation.

Figure 3. In the gradient-weighted class activation map (Grad-CAM) heatmap, the location of the findings 
was correctly identified for patients with gastrointestinal dilatation requiring surgery with diagnoses of 
duodenal atresia (a), midgut volvulus (b), meconium ileus (c), and perforated appendicitis (d). However, 
in two patients diagnosed with intestinal malrotation/midgut volvulus (e, f), the weight of the Grad-CAM 
heatmap was incorrectly identified. 

a

d

b c

e f
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diographs (2,210 for training and 1,453 for 
testing) were used, with 74 showing signs of 
obstruction.19 In this study, the pre-trained 
InceptionV3 CNN model was fine-tuned us-
ing the transfer learning method, trained 
with their dataset, and then tested. The AUC 
was calculated as 0.84, the sensitivity as 
83.8%, and the specificity as 68.1%.

In a subsequent study conducted by 
the same team, a new dataset consisting of 
5,558 radiographs was created using images 
obtained from their hospital and a second 
hospital.20 The average age of the patients in 
this dataset was 59.1 and 59.9 years, which 
differed significantly from the causes of ob-
struction in our patient group. Again, using 
InceptionV3, the researchers trained and 
tested the model with the second dataset.

For comparison, 1,453 test images were 
independently evaluated by three radiol-
ogists. The sensitivity of the radiologists 
ranged from 28.5% to 65.5% (average 44%), 
whereas the CNN model achieved 82.9%. The 
specificity of the radiologists ranged from 
96.4% to 99.6% (average 98.4%), whereas the 
CNN model achieved 92.5%. The radiologists’ 
positive predictive value (PPV) ranged from 
43% to 78% (average 62%), whereas the CNN 
model’s PPV was 28%. The low PPV in the 
CNN model was due to a high number of 
false positives.

Upon examining these false positives, it 
was found that while the intestinal segments 
were within physiological limits and consid-
ered normal clinically and radiologically, the 
CNN model identified them as positive. In-
creasing the number of similar images in the 
training set could potentially improve the 
model’s performance and address this issue. 

In another UK-based study on the same 
subject, a dataset of abdominal radiographs 
(445 normal and 445 with GI obstructions) 
from 990 adult patients was classified using 
transfer learning and ensemble modeling 
with five pre-trained CNN models: VGG16, 
DenseNet121, NasNetLarge, InceptionV3, 
and Xception.4 Of the dataset, 800 images 
were used for training, 80 for validation, and 
110 for testing. Among the 110 test imag-
es, there were 5 false negatives and 4 false 
positives. Among the models, DenseNet121 
was trained using CheXNet, which consist-
ed of chest radiograph images, whereas the 
other models were trained with ImageNet. 
The validation loss rate of the DenseNet121 
model was significantly lower than that of 
the other models, at 43%. In previous studies 
where CNN models were applied to abdom-
inal radiographs, the highest accuracy rate 

achieved was 92%. Although similar or slight-
ly better performance metrics were achieved 
in our study, ours is the first to reach these 
levels in a pediatric patient group. Addition-
ally, upon examining the image samples 
from the aforementioned study, it is evident 
that the images were standardized in size 
and cropped to include only the abdomen. In 
our study, automatic cropping was applied, 
but the cropping process only sometimes 
achieved the desired level in every dataset. 
This may have caused a decrease in perfor-
mance metrics. The performance metrics of 
our study and the aforementioned studies 
are presented in the Supplementary Table 1. 

In all three test runs of the model on our 
dataset, false-positive results were more fre-
quent than false negatives. At first glance, 
this could potentially lead to unnecessary 
surgical or medical treatment. However, since 
patients with positive results will also be 
evaluated through laboratory data, clinical 
examinations, and symptoms, the likelihood 
of unnecessary surgery due to false positives 
is very low. It could, however, result in a loss 
of time and resources due to additional tests 
and examinations. However, false-negative 
cases are more dangerous, as they could 
lead to the oversight of positive cases in the 
busy working environment of emergency 

rooms or outpatient clinics. In the model 
analysis, false negatives were about one-
third as frequent as false positives, with 60% 
of these being patients within the ID group. 
The false-negative rate was relatively low for 
more critical SD cases. When examining sen-
sitivity, the performance metric most affect-
ed by false-negative data, the sensitivity in 
the InceptionResNetV2, EfficientNetV2L, and 
ConvNeXtXLarge models was above 95%. 

The main limitation of the study is the 
small sample size. In CNN models, the 
amount of data is one of the most important 
factors for performance improvement. For 
radiographic studies, there are open-access 
chest radiograph datasets provided by dif-
ferent institutions, with the number of im-
ages approaching 225,000.28 However, to our 
knowledge, no such dataset currently exists 
for abdominal radiographs. In children, ra-
diographs are used far less frequently than in 
adults due to the potential harm of ionizing 
radiation. Therefore, multicenter studies are 
needed to reach sufficient sample sizes. To 
mitigate this limitation, data augmentation 
was applied during the training phase. How-
ever, data augmentation could result in high-
er performance metrics than what might be 
achieved in practical applications. 

Figure 4. Surgical diagnosis, age, sex, and radiographs of abnormal cases classified as normal (false negatives) 
when tested with ConvNeXtXLarge are shown. The name labels on images were manually cropped before 
presenting in the figure. (a) An 11-year-old boy with situs inversus and perforated appendicitis; (b) a 
16-year-old-boy with perforated appendicitis; (c) a 2-year-old boy with postoperative adhesions and Ladd 
band excision; (d) a 2-month-old boy with Hirschsprung’s disease.
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The SD group in the study included 16 
different etiologies, and since the number 
of cases for each disease was too small when 
evaluated individually, performance metrics 
for specific disease groups could not be as-
sessed separately. Another limitation of our 
study is that some patients had multiple 
radiographs taken on different days during 
their illness, and radiographs taken during 
follow-up after a diagnosis was made were 
also included in the study to increase the 
sample size. As the diagnostic process pro-
gresses, signs of GI obstruction become 
more pronounced in radiographs taken later. 
Therefore, if only radiographs from the initial 
visit had been used, performance metrics 
might have been lower. 

When creating the control dataset, the 
aim was to include images representing all 
age groups between 0 and 18 years to en-
sure balanced representation during model 
training. However, patients with abnormal 
findings were mostly infants and young 
children. As a result, the average age of the 
control group (7.29 ± 5.05 years) was higher 
than that of the patient groups (SD: 5.47 ± 
5.82 and ID: 4.22 ± 4.44 years). It is general-
ly expected that there should be no signifi-
cant difference in the age and sex distribu-
tion between the study and control groups, 
which may have introduced bias in our study. 
However, we intentionally chose to create a 
balanced control group for ages 0–18, as we 
believe our model can be applied across all 
stages of childhood. In the future, if large 
open-access datasets are made available, it 
would be beneficial to use age filters when 
selecting data for such studies. 

In conclusion, this study has verified that 
training with transfer learning can be used 
in deep learning to identify GI obstruction in 
children with high accuracy. The appropriate 
preprocessing steps and fine-tuning signifi-
cantly improve the performance of all mod-
els. Although there are inconsistent features 
in the heat map of some correctly labeled 
cases, these models can also be useful for de-
picting the location of obstruction requiring 
surgery and for monitoring dilatation requir-
ing medical treatment. 
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Supplementary Figure 1. Example of the horizontal flipping and rotation performed to an image during data augmentation preprocessing step.

Supplementary Table 1. The performance metrics of the previous studies and the current study on various abdominal X-ray datasets

Number of images (study/control) Accuracy Specificity Sensitivity

Kwon et al.21, 2020 11,384 (1,449/9,935) 0.760 0.250 0.816

Cheng et al.19, 2018 3,663 (74/3,589) 0.685 0.681 0.831

Cheng et al.20, 2019 5,558 (462/5,096) N/A 0.925 0.829

Kim et al.4, 2021 990 (445/445) 0.918 0.927 0.909

Current study (ConvNeXtXLarge), 2024 1,152 (612/540) 0.969 0.968 0.970

Superscripts indicate the reference number in the main manuscript.
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Supplementary Figure 2. Architectural schema of the convolutional neural network models used in this study.12,16,25,29,30

Supplementary Figure 3. The training and validation error graph for the training and fine-tuning epochs of the dataset on the ResNet50 model is presented. The 
epochs after the vertical green line belong to the fine-tuning process, during which the error reduction is much more noticeable. 
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Supplementary Figure 4. Examples of cases with their age and sex classified as abnormal (false positives) when tested with ConvNeXtXLarge despite being healthy. 
Name labels on images were manually cropped before presenting in the figure. 


