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Automatic bone age assessment: a Turkish population study

PURPOSE
Established methods for bone age assessment (BAA), such as the Greulich and Pyle atlas, suffer from 
variability due to population differences and observer discrepancies. Although automated BAA of-
fers speed and consistency, limited research exists on its performance across different populations 
using deep learning. This study examines deep learning algorithms on the Turkish population to 
enhance bone age models by understanding demographic influences.

METHODS
We analyzed reports from Bağcılar Hospital’s Health Information Management System between 
April 2012 and September 2023 using “bone age” as a keyword. Patient images were re-evaluated 
by an experienced radiologist and anonymized. A total of 2,730 hand radiographs from Bağcılar 
Hospital (Turkish population), 12,572 from the Radiological Society of North America (RSNA), and 
6,185 from the Radiological Hand Pose Estimation (RHPE) public datasets were collected, along 
with corresponding bone ages and gender information. A random set of 546 radiographs (273 from 
Bağcılar, 273 from public datasets) was initially randomly split for an internal test set with bone age 
stratification; the remaining data were used for training and validation. BAAs were generated using 
a modified InceptionV3 model on 500 × 500-pixel images, selecting the model with the lowest 
mean absolute error (MAE) on the validation set.

RESULTS
Three models were trained and tested based on dataset origin: Bağcılar (Turkish), public (RSNA–
RHPE), and a Combined model. Internal test set predictions of the Combined model estimated bone 
age within less than 6, 12, 18, and 24 months at rates of 44%, 73%, 87%, and 94%, respectively. 
The MAE was 9.2 months in the overall internal test set, 7 months on the public test set, and 11.5 
months on the Bağcılar internal test data. The Bağcılar-only model had an MAE of 12.7 months on 
the Bağcılar internal test data. Despite less training data, there was no significant difference between 
the combined and Bağcılar models on the Bağcılar dataset (P > 0.05). The public model showed an 
MAE of 16.5 months on the Bağcılar dataset, significantly worse than the other models (P < 0.05).

CONCLUSION
We developed an automatic BAA model including the Turkish population, one of the few such stud-
ies using deep learning. Despite challenges from population differences and data heterogeneity, 
these models can be effectively used in various clinical settings. Model accuracy can improve over 
time with cumulative data, and publicly available datasets may further refine them. Our approach 
enables more accurate and efficient BAAs, supporting healthcare professionals where traditional 
methods are time-consuming and variable.

CLINICAL SIGNIFICANCE
The developed automated BAA model for the Turkish population offers a reliable and efficient al-
ternative to traditional methods. By utilizing deep learning with diverse datasets from Bağcılar Hos-
pital and publicly available sources, the model minimizes assessment time and reduces variability. 
This advancement enhances clinical decision-making, supports standardized BAA practices, and 
improves patient care in various healthcare settings.
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Children’s growth is characterized 
by non-linear progression, typical-
ly advancing in a sequential man-

ner. Although metrics such as height and 
weight are useful for monitoring growth, 
bone development often provides the clos-
est approximation to chronological age. 
The Greulich and Pyle (GP) and Tanner and 
Whitehouse (TW) methods are commonly 
employed for bone age assessment (BAA).1,2 
However, these methods rely on the exper-
tise of radiologists and are subject to inter-
pretation biases.3 To address this, automatic 
BAA models have been developed, offering 
enhanced accuracy, repeatability, and effi-
ciency.4 Our study aims to evaluate the per-
formance of deep learning algorithms within 
the Turkish population and enhance model 
efficacy at a population level. Additionally, 
we seek to demonstrate that establishing a 
model “from scratch” is feasible for a medi-
um-sized hospital without relying on funds, 
grants, or dedicated commercial software.

 Methods

Ethics approval

Approval was granted by the Non-Inter-
ventional Clinical Research Ethics Commit-
tee of University of Health Sciences Türkiye, 
Bağcılar Training and Research Hospital, 
with the ethics committee decision num-
bered 2023/09/08/051 and dated Septem-
ber 22, 2023. Informed consent was waived 
due to the retrospective nature of the study. 
All procedures in the present study involv-
ing human participants were performed in 
accordance with the ethical standards of the 
institutional and/or national research com-
mittee and with the 1964 Helsinki Declara-

tion and its later amendments or compara-
ble ethical standards.

 Data collection and dataset creation

Wrist and hand radiographs, bone age 
reports, and gender information for pa-
tients aged 0–18 years were collected from 
the Picture Archiving and Communication 
System without interpretational hindrances. 
A total of 2,933 radiographs conforming to 
Turkish standards were acquired from hos-
pital records. Patients aged >18 years, im-
ages with severe artifacts or inappropriate 
field of view, and reports without BAA were 
excluded; 2,730 X-rays were found to be el-
igible (Figure 1). While integrating X-rays 
from Bağcılar into the dataset, evaluations 
by S.Ö. (who had 6 years of radiology exo-
perience) were compared with the clinical 
reading report. When the difference was ≤6 
months, the report was deemed accurate. In 
cases where the difference was >6 months, 
A.T.C. (who had 32 years of radiology expe-
rience) and S.Ö. reevaluated images togethd-
er, and a reference standard was obtained 
with a consensus decision. Additionally, 
two different open-source public datasets 
were incorporated [Radiological Society of 
North America (RSNA): https://www.rsna.
org/rsnai/ai-image-challenge/rsna-pediat-
ric-bone-age-challenge-2017 and Radiolog-

ical Hand Pose Estimation (RHPE): https://
www.kaggle.com/datasets/ipythonx/rhpe-
bone-age] with the filtering age range set 
to 0–18 years, resulting in a hybrid dataset 
sourced from various devices, vendors, and 
populations.5,6 After filtering, the RSNA data-
set consisted of 12,572 labeled radiographs, 
while the RHPE dataset included 6,185 labe-
led radiographs, and these datasets were fur-
ther concatenated with the Bağcılar dataset. 
From the combination of all three datasets, 
an internal test dataset (n = 546) was created 
by randomly selecting 10% of Bağcılar data 
(n = 273) and an equal amount of public data 
(n = 273). The remaining data were used to 
create three distinct training and valida-
tion splits (Bağcılar, Public, and Combined), 
maintaining a 9:1 training-to-validation ratio 
(Figure 1). Bone age-based stratification was 
applied during the random splitting of each 
dataset using the train_test_split function 
from the scikit-learn Python library.

 Model structure

In 2017, an RSNA BAA competition was 
held. The structure of the models used by 
the competitors and their error rates were 
published by Halabi et al.5 The winner of the 
competition was a commercial company 
that profited from this work. The authors do 
not have any collaboration, partnership, or 

Main points

• Population-specific deep learning model: 
We developed an automated model using 
the YOLOv8m architecture for hand detec-
tion and modified InceptionV3 for bone age 
assessment (BAA) tailored for the Turkish 
population by integrating Bağcılar Hospital, 
Radiological Society of North America, and 
Radiological Hand Pose Estimation datasets.

• Improved accuracy with combined data: The 
Combined model achieved a mean absolute 
error of 9.2 months and a 96% correlation 
with the reference standard, outperforming 
our single-source models.

• Clinical application and future prospects: 
This provides a consistent and efficient BAA 
tool, reducing radiologists’ workload and 
variability. We aim to enhance accuracy with 
more diverse data and validate the model 
through broader clinical studies.

Figure 1. Flowchart illustrating the data collection process, inclusion and exclusion criteria, and dataset 
splitting methodology for the bone age prediction study. RSNA, Radiological Society of North America; 
RHPE, Radiological Hand Pose Estimation.
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funding agreement with this company. The 
authors’ models were built and trained “from 
scratch” using published architectures. As 
in the competition, a custom InceptionV3 
model proved to be more suitable for this 
study. As a custom preprocessing step to 
improve model performance, a hand-de-
tection model was also added using the 
YOLOv8m architecture. In the hospital’s rou-
tine radiography acquisitions, some of the 
X-rays had a field of view large enough to 
include the elbow, whereas in others, pha-
langes were not included. The goal was to 
crop and adjust only the hand and wrist 
portion using YOLOv8m. Due to the heter-
ogeneous nature of the hospital’s dataset, 
encompassing images from diverse regions, 
a YOLOv8m model was initially trained for 
hand detection. Images were cropped with 
detected bounding boxes of the hand area 
before training the InceptionV3 model. All 
images were resized to 500 × 500 pixels, and 
an InceptionV3-based deep convolutional 
neural network (CNN) was constructed to 
process pixel information. Binary gender 
data (0 for female, 1 for male) were incor-
porated to account for gender effects via 
a densely connected layer with 32 neu-
rons. Gender and pixel information were 
merged into a single network, followed by 
two densely connected layers with recti-
fied linear unit activation, each containing 
1,000 neurons, facilitating complex pattern 
learning. The output layer utilized mean 
absolute error (MAE) loss for regression sim-
plification (Figure 2). A consistent model ar-
chitecture was used throughout the study. 
It was trained and tested on three distinct 
datasets: the Bağcılar dataset, the public 
datasets (RSNA and RHPE), and a combined 
dataset consisting of both. For clarity, refer-
ences to the “Bağcılar model,” “Public mod-
el,” and “Combined model” datasets pertain 
to the data used during model training and 
testing, not to distinct model architectures.

 Model training process

The study utilized Keras 3.02, TensorFlow 
2.15, and Python 3.9 for training, using an 
Nvidia RTX 3090 24GB graphics card. Data 
augmentation techniques, including rota-
tion (up to 20 degrees), horizontal/vertical 
shifting (up to 20%), zooming (up to 20%), 
and horizontal flipping, were applied across 
the entire dataset to encourage the learning 
of patient-specific features. The final model 
was trained using Adam optimization with a 
batch size of 32 for 500 epochs. Learning rate 
adjustments and early stopping mechanisms 
were implemented. Models were trained 
and validated (90% training, 10% validation) 
and tested on an initially separated internal 
testing dataset, which was composed of an 
equally distributed number of images from 
both local and public sources (Figure 1).

 Statistical analysis

Normality analysis was conducted using 
the Kolmogorov–Smirnov test. For compar-
isons between variables showing normal 
distribution, t-tests were employed, while 
one-way analysis of variance (ANOVA) was 
utilized for multiple variable comparisons. 
The Mann–Whitney U test and Kruskal–Wal-
lis analysis were employed for variables that 
were not normally distributed. Post-hoc 
analyses were conducted using Bonferro-
ni-corrected Mann–Whitney U and Tukey 
tests. A significance threshold of P < 0.05 was 
applied. Python version 3.9 was utilized for 
statistical analyses and plot generation.

Results
A total of 21,487 patients were included 

in the study, with a mean bone age of 10.4 
± 3.5 years, and 51% were female. A total 
of 18,757 cases were from public datasets 
(RSNA and RHPE), with a mean bone age of 
10.5 ± 3.4 years and 50% female representa-
tion (Figure 3). The Bağcılar dataset had a 

mean bone age of 9.8 ± 3.9 years, with 38% 
female patients. Table 1 shows demographic 
data and information regarding the referring 
departments and International Classification 
of Diseases-10 (ICD-10) diagnosis codes for 
the Bağcılar dataset. The primary referring 
departments were general pediatrics (48%) 
and pediatric endocrinology (47.5%). The 
majority of cases (81%) were referred with 
preliminary diagnoses under the ICD-10 
main category “endocrine, nutritional, and 
metabolic diseases.”

The performance metrics for the models, 
evaluated in the internal testing dataset, 
showed that the Public model had an MAE 
of 11.3 months, with a mean squared error 
(MSE) of 302.1 and a root MSE (RMSE) of 17.4. 
The Bağcılar model (BM) showed a slightly 
higher MAE of 12.6 months but improved 
MSE and RMSE values of 260.3 and 16.1, re-
spectively. The Combined model demon-
strated the best overall performance, achiev-
ing the lowest MAE of 9.2 months, along with 
an MSE of 170.7 and an RMSE of 13.1, high-
lighting its superior accuracy compared with 
the other models.

Based on the internal testing dataset, the 
BM achieved bone age predictions within 
absolute differences of ≤6, ≤12, ≤18, and 
≤24 months for 31%, 57%, 77%, and 88% 
of cases, respectively, with a Pearson cor-
relation of 93%. The public dataset model 
(PM) achieved predictions within the same 
ranges for 45%, 69%, 81%, and 89% of cases, 
also with a Pearson correlation of 93%. The 
combined dataset model (CM) demonstrat-
ed the best performance, with predictions 
within ≤6, ≤12, ≤18, and ≤24 months for 
44%, 73%, 87%, and 94% of cases, respec-
tively, and a Pearson correlation of 96%, 
highlighting its superior accuracy and clin-
ical utility.

Comparison of bone age predictions from 
the PM, BM, and CM models with the refer-
ence standard in the internal testing dataset 
revealed no statistically significant differenc-
es for any model, as determined by inde-
pendent t-tests (P > 0.05).

The distribution of patients by age group 
and gender across the training, validation, 
and internal testing datasets is presented in 
Table 2. The mean and standard deviation of 
predicted bone ages alongside the reference 
standard for each age group and across mod-
els are shown in Table 3. Analyses of variance 
conducted for each age group between the 
three model assessments, and the reference 
standard revealed significant differences in 
the 0–3, 3–6, 6–9, 9–12, 12–15, and 15–18 

Figure 2. Architecture of the bone age prediction model: Combining sex input (encoded as 0 or 1) through 
a Dense32 layer and image input (500 × 500 × 1 pixels) processed via InceptionV3, followed by two dense 
layers (1,000 neurons each) to predict age in months.



 

 • March 2025 • Diagnostic and Interventional Radiology Öztürk et al.

groups (P < 0.001). Subsequently, a Tukey 
post-hoc analysis was carried out to eluci-
date the differences between models and 
the reference standard for each respective 
age group where significance was observed 
in the ANOVA:

• 0–3 and 3–6 years: The PM differed signif-
icantly from both the reference standard 
and the other models (P < 0.001). 

• 6–9 years: Significant differences were ob-
served between the BM and both the ref-
erence standard (P = 0.016) and the CM (P 

= 0.042). The PM also differed significantly 
from the reference standard (P = 0.0003) 
and the CM (P = 0.001). 

• 9–12 years: Significant differences were 
found between the reference standard 
and the BM (P = 0.034) as well as between 
the BM and PM (P = 0.002). 

• 12–15 years: The BM differed significantly 
from the reference standard (P = 0.005) 
and the CM (P = 0.002). 

• 15–18 years: The BM showed significant 
differences compared with the reference 
standard (P = 0.011) and the CM (P = 
0.003). 

These findings are also shown with box-
plots in Figure 4 and indicate that while 
significant differences exist among certain 
models and age groups, the degree of dis-
crepancy varies, emphasizing the variability 
in model performance across age groups. 
Notably, no significant difference was found 
between the reference standard and the CM 
across all age groups.

The MAEs of the models in the Public 
internal testing data were 6.2, 6.9, and 12.5 
months for the PM, CM, and BM, respectively. 
The ANOVA conducted on the absolute error 
differences of the three model predictions in 
the public internal testing dataset revealed a 
statistically significant difference (s = 60.01, P 
< 0.001). Tukey post-hoc analysis of the mod-
el assessments in the Public internal testing 
dataset showed that the BM had a statistical-
ly significantly lower performance compared 
with the PM and CM, with MAE differences of 
6.3 and 5.5 months, respectively (P < 0.05). 
There was no significant difference between 
the PM and CM (P > 0.05) (Table 4).

The MAEs of the models in the Bağcılar 
internal testing dataset were 16.5, 11.4, and 
12.7 months for the PM, CM, and BM respec-
tively. Analyses of variance among the abso-
lute error differences of the three models in 
the Bağcılar internal testing dataset found a 
statistically significant difference (s = 11.19, 
P < 0.001). In the Tukey post-hoc analysis 
conducted among the model assessments 
in the Bağcılar test dataset, the PM showed 
a statistically significantly lower performance 
compared with the BM and CM, with MAE 
differences of 3.8 and 5 months, respectively 
(P < 0.05). However, no significant difference 
was observed between the BM and CM (P > 
0.05) (Table 5).   

Bland–Altman plots were generated to 
display the differences between the BM, PM, 
CM, and the reference standard in months, 

Table 1. Clinical characteristics of patients in the Bağcılar dataset

n %

Gender

 Male 1,693 62

 Female 1,037 38

Referring department

 General pediatrics 1,310 48

 Pediatric endocrinology 1,296 47.5

 Orthopedics 40 1.5

 Other* 84 3

ICD-10 category **

 Endocrine, nutritional, and metabolic diseases 2,211 81

 Symptoms, signs, and abnormal clinical and  
 laboratory findings, not elsewhere classified 164 6

 Factors influencing health status and contact  
 with health services 104 3.8

 Diseases of the blood and blood-forming  
 organ and certain disorders involving the  
 immune mechanism

65 2.4

 Diseases of the respiratory system 46 1.7

 Diseases of the genitourinary system 43 1.6

 Diseases of the musculoskeletal system and  
 connective tissue 33 1.2

 Other 64 2.3

Average bone age was 9.8 years (standard deviation: 3.9). *Including mainly health board, family medicine, 
emergency department referrals; **ICD-10: International Classification of Diseases, tenth revision.

Table 2. Age and gender distribution of training and validation datasets for each model and 
internal testing dataset

Age groups (years)

Gender Split 0–3 3–6 6–9 9–12 12–15 15–18

Bağcılar model

Female
Train 64 184 363 462 165 131

Val 9 19 46 52 18 13

Male
Train 97 139 143 227 168 68

Val 8 18 9 26 20 8

Public model

Female
Train 273 716 2,242 3,344 1,477 201

Val 33 94 249 347 168 17

Male
Train 251 945 1,265 1,807 3,445 669

Val 27 91 146 208 387 82

Combined model

Female
Train 338 923 2,624 3,785 1,661 321

Val 41 90 276 420 167 41

Male
Train 346 1,065 1,395 2,030 3,615 743

Val 37 128 168 238 405 84

Internal testing set
Female Test 9 30 76 121 46 17

Male Test 21 37 36 57 71 25
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highlighting the variance between the mod-
el assessments and the reference standard 
within the internal testing dataset (Figure 
5). Additionally, scatter plots with linear re-
gression lines were created for each model 
to provide a clearer understanding of their 
performance across different internal testing 
datasets (Figure 6).

Discussion
The accuracy of BAA is largely depend-

ent on the experience of the physician, as 
traditional evaluation is often a subjective 
estimation. Traditional assessment studies 
are typically conducted by experienced phy-
sicians through visual inspection and manu-

al marking. This process requires significant 
time and effort, and different physicians may 
have varying standards when evaluating the 
same radiograph. Therefore, automated as-
sessment approaches for BAA are increasing-
ly gaining interest.

 On average, an experienced radiologist 
spends approximately 1.4 minutes using the 
GP method and 7.9 minutes using the TW 
method to assess a patient.7 Moreover, both 
methods are associated with high intra- and in-
ter-observer variability. The reported range of 
BAA results averages 0.96 years (11.5 months) 
for GP and 0.74 years (8.9 months) for TW.8 In 
some stages of child development, changes 
can be very subtle, especially after the age of 
14 years, and the sensitivity perceivable by the 
human eye through radiological examination 
may be lacking.9 The absence of significant dif-
ferences between the predicted bone age us-
ing our proposed models and those obtained 
using the GP and TW methods enhances the 
reliability of our approach.

 Our model utilized upper extremity ra-
diographs containing hand and wrist re-
gions with bone age reports sourced from 
Bağcılar. The images were taken with dif-
ferent presets and exposures, resulting in 
an inhomogeneous dataset. Some radio-
graphs did not include joints prioritized in 

Table 3. Mean and standard deviation of reference standard and predicted bone ages for different age groups in the internal testing dataset

(Months) Public model predictions Bağcılar model predictions Combined model predictions Reference standard

0–36 46.8 ± 27.3 30.6 ± 11.2 31.6 ± 10.8 29.9 ± 6.4

36–72 71.6 ± 17.6 64.2 ± 19.5 57.8 ± 14.1 60.6 ± 9.8

72–108 105.9 ± 19.9 103.3 ± 18.2 97.3 ± 18.1 96.6 ± 9.2

108–144 131.8 ± 16.1 126.4 ± 15.9 128.5 ± 14.7 130.5 ± 9.1

144–180 162.2 ± 16.5 155.5 ± 19.5 163.2 ± 17.9 162.6 ± 9.2

180–216 194.8 ± 14.4 189.0 ± 16.2 199.8 ± 15.2 198.6 ± 9.3

Table 4. Post-hoc Tukey test for Public internal testing data. In the analysis of mean absolute error (MAE) for Public internal testing data, no 
significant difference was observed between the Combined model (CM) and the Public model (PM)

Post-hoc, Tukey test for Public test data

Group 1 Group 2 MAE difference (months) P value Lower (months) Upper (months) Significant

BM MAE CM MAE −5.50 <0.001 −6.97 −4.03 Yes

BM MAE PM MAE −6.28 <0.001 −7.75 −4.81 Yes

CM MAE PM MAE −0.78 0.43 −2.24 0.68 No

Table 5. Post-hoc Tukey test for Bağcılar internal testing data. In the analysis of mean absolute error (MAE) for Bağcılar internal testing data, 
no significant difference was observed between the Bağcılar model (BM) and the Combined model (CM)

Post-hoc, Tukey test for Bağcılar internal testing data

Group 1 Group 2 Mean difference (months) P value Lower (months) Upper (months) Significant

BM MAE CM MAE −1.24 0.496 −3.84 1.35 No

BM MAE PM MAE 3.77 0.002 1.18 6.37 Yes

CM MAE PM MAE 5.02 <0.001 2.43 7.62 Yes

Figure 3. Bone age distribution across datasets: Histogram plots showing the distribution of bone ages 
(in years) for the Radiological Hand Pose Estimation, Bağcılar, and Radiological Society of North America 
datasets.

RHPE, Radiological Hand Pose Estimation; RSNA, Radiological Society of North America.



 

 • March 2025 • Diagnostic and Interventional Radiology Öztürk et al.

BAA. Others were not captured at the cor-
rect position or angle. In some cases, bones 
were superimposed, and the parent’s hand 
was often visible in infant radiographs. Con-
sidering this data heterogeneity, our model 
better reflects daily clinical practice com-
pared to similar studies. 

In this study, public datasets and data 
from Bağcılar Hospital were used as sourc-
es. Racial differences, imaging parameters, 
and image quality may have influenced the 
results. However, we believe that a model 
trained with these parameters could be more 
consistent than the inter- and intra-observer 

variability associated with the GP and TW 
methods.8 Further prospective studies are 
needed to assess the added value of such 
models in daily clinical practice.

 Recently, many deep learning methods 
have been developed for BAA, and RSNA even 
organized a competition for this purpose.5 

With the developed methods, the timing 
and pattern of ossification centers according 
to age can be extracted from images using 
deep learning techniques for BAA. Thus, this 
process, which is time-consuming and sub-
jective, with differences between evaluators 
and even variations within the evaluator, can 
be carried out on more solid foundations.10 

In recent studies, we see models where var-
ious ensemble techniques are employed, 
combining multiple models into one.11 Liu 
et al.12 suggested that ranking learning may 
be a more suitable approach for the BAA task 
than classification and regression. In their 
study, they achieved accurate BAAs with 
an MAE of approximately 6 months using a 
proposed method based on a rank-mono-
tonic enhanced ranking CNN.12 Li et al.13 de-
veloped a two-stage, fully automatic model Figure 4. Boxplot of bone age predictions for each model across age groups. 

Figure 5. Bland–Altman plots showing the difference between the Bağcılar model, Public model, Combined model, and the reference standard in months, illustrating 
the variance between the reference standard and the model assessment in the internal testing dataset.

a b

c
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that does not require manual annotation. 
They demonstrated MAEs of 5.45 months on 
the RSNA dataset and 3.34 months on a spe-
cific dataset.13 Similarly, our model does not 
involve annotation. It is an end-to-end mod-
el where the bone age is directly assessed by 
using the cropped hand portion of the X-ray 
alongside gender information as input. Since 
our main goal is to show the effect of popula-
tion differences on model performances, we 
preferred a validated method that produced 
the best performance in the RSNA 2017 bone 
age prediction challenge.

 Kim et al.14 developed a model based on 
a completely Korean, healthy population, 
assuming chronological age as the real bone 
age, such as an atlas study. The developed 
deep learning model followed a rigorous 
preprocessing process for estimating chron-

ological age from hand radiographic imag-
es. Background removal and transformation 
networks were applied using manual anno-
tations from an experienced musculoskel-
etal radiologist. ResNet-50 was used as the 
basic architecture for age estimation. Com-
pared with their GP-based model, the Kore-
an model showed a lower MAE (8.2 vs. 10.5 
months; P = 0.002). Additionally, the rate of 
BAAs within 6 months of chronological age 
was higher (44.5% vs. 36.4%; P = 0.04) with 
the Korean model. Similarly, our study is also 
a population-specific model study. In their 
model, many radiographs were not used as 
it was based on a non-patient population, 
such as an atlas. Consequently, there were 
21,036 training sets left, and separate test 
datasets were obtained from two institu-
tions, consisting of 343 and 321 data sets, 
respectively. Manual annotations were used 

in creating the model, which is generally 
time-consuming and cumbersome. Our de-
veloped model demonstrated performance 
comparable with existing models. Utilizing 
heterogeneous datasets plays a critical role 
in enhancing model generalizability by ex-
posing the algorithm to a wider range of 
population and imaging variations. This di-
versity allows the model to better identify 
under-represented patterns and reduces the 
risk of overfitting to specific subsets. The im-
proved performance of the Combined model 
compared with the locally trained BM under-
scores the importance of incorporating data 
from heterogeneous sources in achieving 
better generalization. Furthermore, increas-
ing the diversity of the included population 
and imaging modalities can further enhance 
these models by enabling them to capture 
relevant information from under-represent-

Figure 6. Bone age assessments of the (a) Bağcılar model, (b) Public model, and (c) Combined model on the internal testing dataset in months. Translucent bands 
around the regression line represent confidence intervals.
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ed portions of the data. Greater diversity ul-
timately strengthens model robustness and 
improves its capacity to extract meaningful 
insights. In our model, X-rays requested for 
BAA and previously reported by radiologists 
were used. Even though the demographic 
and diagnostic information was not exten-
sively available in public datasets, models 
developed using these sources performed 
worse on local data, indicating important 
population differences alongside data cura-
tion-related information loss.

Spampinato et al.15 achieved an MAE of 
9.6 months using Bonet and the RSNA data-
set. Larson et al.16 achieved an MAE of 6.24 
months on the RSNA dataset with a deep 
residual network structure based on the GP 
mapping method using ResNet50. Pan et 
al.17 used a U-Net model to segment hand 
mask images from raw X-ray images, em-
ploying a deep active learning technique 
that reduces annotation burden, achieving 
an MAE of 8.59 months on the RSNA dataset. 
In our developed Combined model, the MAE 
value for all data was 9.2 months, 6.9 months 
for the public dataset, and 11.4 months for 
the Bağcılar dataset. The described meth-
ods, similar to our model, do not involve 
annotation. Annotation-based methods 
involve using processed images and add-
ing manual bounding box annotations to 
these images. These strategies can extract 
features from specific regions based on pri-
or knowledge and then generate age esti-
mates. Annotation-based methods, which 
involve additional manual annotations, gen-
erally exhibit better performance and high-
er accuracy compared with annotation-free 
methods. However, manual annotation is 
time-consuming and has made it difficult for 
experimental methods to transition to clini-
cal applications.

Unlike many previous studies that rely 
on homogeneous datasets, our model was 
trained and validated using a heterogene-
ous dataset that includes radiographs from 
both Bağcılar and public datasets (RSNA and 
RHPE). This dataset reflects a wide range of 
imaging conditions, patient demographics, 
and ethnic backgrounds, thereby increasing 
the model’s robustness and generalizability 
to real-world clinical settings. The inclusion 
of such diverse data sources is crucial, as it 
enables the model to handle a broader spec-
trum of clinical scenarios, making it more 
applicable across different populations. 
The results of our study are promising and 
highlight the potential of automated BAA 
models. The Combined model, which inte-
grated data from both Bağcılar and public 

datasets, demonstrated a high Pearson cor-
relation of 96% with the reference stand-
ard, indicating strong predictive accuracy. 
Specifically, the Public model achieved an 
MAE of 11.3 months when tested across all 
test data, while the BM had a higher MAE of 
12.6 months. However, when data from both 
sources were combined, the MAE improved 
to 9.2 months, highlighting the advantage 
of integrating diverse datasets to enhance 
model performance. This improvement 
could be attributed to the increase in the 
number of data and the model’s increased 
focus on significant areas due to heteroge-
neity, enabling the model to account for 
these differences more effectively, resulting 
in more accurate and reliable assessments.

The importance of data diversity is further 
emphasized when examining the model’s 
performance across different age groups. 
The Combined model showed consistent 
accuracy across various age ranges, particu-
larly during the critical growth periods of 
9–12 and 12–15 years. In contrast, the BM 
alone exhibited significant deviations from 
the reference standard in these age groups. 
This consistency across age groups is crucial 
for clinical application, as it ensures that the 
model can be reliably used across a broad 
patient demographic, minimizing the risk of 
misclassification and improving overall pa-
tient care. 

The study has several limitations. Primar-
ily, the limited data quantity has been a key 
factor, particularly with a small number of 
radiographs for children under 3 years and 
a considerably low amount of high-quality 
data. Another limitation is the absence of a 
study demonstrating inter-observer differ-
ences in our Bağcılar dataset. However, there 
are many studies in the literature addressing 
this issue. Additionally, the bone ages in our 
data were determined using manual meth-
ods, such as GP and TW, which, despite hav-
ing their own limitations, are commonly used 
in daily practice. Nevertheless, there was 
no statistically significant difference found 
between the bone ages obtained with our 
Combined model and those obtained with 
clinical methods. Furthermore, the model’s 
performance in older adolescents (aged 
15–18 years) showed higher MAEs compared 
with younger age groups. This could be due 
to the increased complexity of bone matu-
ration patterns in these age ranges, where 
small differences in ossification can lead to 
significant variations in BAA. Addressing this 
issue may require the development of more 
specialized models or the inclusion of addi-
tional features, such as hormonal markers or 

elbow and shoulder X-rays, which could pro-
vide further insights into bone development 
in these populations.

In conclusion, this study presents the de-
velopment of an automatic BAA model using 
data from Bağcılar, RSNA, and RHPE, making 
it one of the few studies to incorporate a 
Turkish population in deep learning-based 
BAA research. Our model is particularly no-
table for its ability to integrate heterogene-
ous data, demonstrating that the inclusion 
of diverse datasets can significantly enhance 
model performance. The proposed models 
offer the advantage of automated analysis 
without any need for annotation.

Despite the challenges posed by popula-
tion-level differences, heterogeneous data, 
and image quality issues, these models can 
be effectively adopted in various clinical en-
vironments, and accuracies can be increased 
over time with prospectively cumulating 
data. By enabling more accurate and effi-
cient BAAs, our approach offers valuable sup-
port to healthcare professionals, particularly 
in settings where traditional methods are 
time-consuming and subject to variability.

Future research should aim to expand 
the dataset, particularly for younger and 
older age groups, to improve the model’s 
accuracy and generalizability. Additionally, 
exploring the incorporation of other clinical 
parameters, such as hormonal levels, could 
provide a more comprehensive assessment 
of bone age, particularly in complex cases. 
Finally, further validation studies, including 
prospective trials and cross-institutional col-
laborations, will be crucial for ensuring the 
widespread adoption and clinical utility of 
automated BAA models.
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