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PURPOSE
The primary objective of this research is to enhance the accuracy and efficiency of information 
extraction from radiology reports. In addressing this objective, the study aims to develop and eval-
uate a deep learning framework for named entity recognition (NER).

METHODS
We used a synthetic dataset of 1,056 Turkish radiology reports created and labeled by the radiol-
ogists in our research team. Due to privacy concerns, actual patient data could not be used; how-
ever, the synthetic reports closely mimic genuine reports in structure and content. We employed 
the four-stage DYGIE++ model for the experiments. First, we performed token encoding using four 
bidirectional encoder representations from transformers (BERT) models: BERTurk, BioBERTurk, Pub-
MedBERT, and XLM-RoBERTa. Second, we introduced adaptive span enumeration, considering the 
word count of a sentence in Turkish. Third, we adopted span graph propagation to generate a mul-
tidirectional graph crucial for coreference resolution. Finally, we used a two-layered feed-forward 
neural network to classify the named entity.

RESULTS
The experiments conducted on the labeled dataset showcase the approach’s effectiveness. The 
study achieved an F1 score of 80.1 for the NER task, with the BioBERTurk model, which is pre-trained 
on Turkish Wikipedia, radiology reports, and biomedical texts, proving to be the most effective of 
the four BERT models used in the experiment. 

CONCLUSION
We show how different dataset labels affect the model’s performance. The results demonstrate the 
model’s ability to handle the intricacies of Turkish radiology reports, providing a detailed analysis 
of precision, recall, and F1 scores for each label. Additionally, this study compares its findings with 
related research in other languages.

CLINICAL SIGNIFICANCE
Our approach provides clinicians with more precise and comprehensive insights to improve patient 
care by extracting relevant information from radiology reports. This innovation in information ex-
traction streamlines the diagnostic process and helps expedite patient treatment decisions.

KEYWORDS
Named entity recognition, radiology reports, bidirectional encoder representations from trans-
formers, Turkish, computed tomography, thorax

Radiology reports are a cornerstone of modern healthcare, capturing intricate diagnos-
tic insights derived from medical images. These unstructured reports encapsulate the 
clinical context, imaging techniques, findings, and interpretations, which are pivotal in 

guiding patient care decisions.1 However, their inherent lack of structure poses challenges for 
downstream applications that require standardized and structured data, including research, 
billing, accreditation, and quality improvement.2 There is a push toward using structured 
formats instead of free-text radiology reports. Although initiatives such as RadReport2 and 
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RadLex3 have helped standardize radiology 
reporting, unstructured formats remain the 
most common format despite the need for 
standardization. Various research methodol-
ogies have been investigated to bridge this 
gap, including rule-based systems, machine 
learning, and deep learning.

Our study focuses on applying deep learn-
ing to extract named entities from radiology 
reports written in Turkish. In addition, we 
developed a new dataset to train the named 
entity recognition (NER) task and considered 
the distinctive characteristics of the Turkish 
language to attain the best possible results. 
For the NER task, we utilized the DYGIE++ 
framework4 and adapted it to the Turkish 
language. The DYGIE++ framework relies on 
a bidirectional encoder representations from 
transformers (BERT)5 model to extract text 
embeddings. Therefore, we used the BioBER-
Turk model,6 a variant of BERT pre-trained 
on Turkish biomedical data. This combina-
tion allows for the extraction of structured 
information, which can be used to enhance 
various medical applications. Our approach 
builds on previous research and aims to im-
prove the overall effectiveness of informa-
tion extraction in radiology reporting.

The potential of deep learning applica-
tions in Turkish radiology reports has yet to 
be fully explored. To remedy this, we worked 
with Ankara Bilkent City Hospital radiologists 
and hand-labeled a substantial dataset of 
1,056 reports. To the best of our knowledge, 
this is the first dataset in Turkish created for 
this purpose. These reports have been ex-
pertly labeled to include observation and 
symptom categories, and they serve as a cru-
cial foundation for our experiments.

In this paper, we provide a detailed ex-
planation of our methodology and show-
case how using DYGIE++ with various BERT 
models has been effective for our NER task of 
extracting observations and symptoms from 
Turkish radiology reports. Although there are 
no studies against which we can compare 
our F1 results (80.1) in Turkish, our results are 

similar to those in other languages. The im-
plications of our study go beyond Turkish ra-
diology reports; the lessons we learned and 
the methodologies we established can be 
applied to multiple languages and medical 
contexts, leading to improved information 
extraction practices. We hope to see a future 
where structured insights can be easily ex-
tracted from unstructured reports, leading to 
a revolution in medical reporting practices.

In the following sections, we will present 
related research and discuss the methodolo-
gy, results, and conclusions that support our 
findings. The methodology section will elab-
orate on the dataset and experimental setup. 
In the results section, we will showcase the 
findings of our experiments conducted using 
varying configurations. In the discussion, we 
will compare our results with other studies in 
the field, including those conducted in lan-
guages other than Turkish. We hope to con-
tribute to the ongoing dialogue on integrat-
ing deep learning into radiology reporting 
and inspire innovation in healthcare.

Methods
We created a labeled dataset of 1,056 ra-

diology reports produced by the radiologists 
in our research team. Due to ethical and pri-
vacy considerations, it was not feasible to 
use actual patient data. Therefore, the radiol-
ogists drew from their experience of com-
posing authentic radiology reports to gen-
erate synthetic reports that resembled the 
structure and content of genuine ones. This 
approach ensured that the dataset retained 
the critical features and complexities of real 
reports while safeguarding patient confiden-
tiality and data privacy. The reports focused 
on computed tomography (CT) scans of the 
thorax area, encompassing the chest, lungs, 
heart, abdomen, and other vital organs. 
Figure 1 shows an example of a labeled re-
port. This dataset can be utilized in various 
medical research projects and assist in de-
veloping diagnostic tools and techniques. 
Table 1 enumerates imaging types and their 
frequencies. We used the expertise of radiol-
ogists to label the data for NER, resulting in 
nine labels: Obs_Present, Obs_Uncertain, 
Obs_Technical, Obs_Anatomy, Obs_Absent, 
Obs_Advice, Symptom_P, Symptom_A, and 
Differential_Diagnosis. Table 2 enumerates 
the labels, their descriptions, and their fre-
quencies.

We established a Doccano platform to 
simplify the labeling of our reports. Docca-
no is an open-source web-based annotation 
tool that provides a collaborative environ-

ment for annotating text elements such as 
named entities. It allows users to upload text 
documents and add annotations to a group 
of words within the document. Users work in 
parallel on separate documents that need to 
be labeled. Due to its user-friendly interface, 
Doccano was particularly valuable in simpli-
fying the labeling process. An export of the 
data to the JavaScript object notation lines 
format became readily available once the 
labeling was complete. We labeled 1,056 re-
ports by randomly dividing them into three 
equal parts for three radiologists to label in 
parallel. Ural Koç, co-author reviewed the 
labeling results and supervised the entire la-
beling process.

We named our task entity recognition us-
ing the DYGIE++ framework. The DYGIE++ 
framework is a span-based model for extract-
ing entities, relations, and event triggers. We 
performed the entity extraction in isolation 
to accomplish our task. Our approach in the 
four stages of the DYGIE++ model is detailed 
as follows:

1. Token encoding: This step uses a BERT 
model to obtain token representations of the 
text. It utilizes a sliding window technique, 
feeding a sentence to the model at each iter-
ation along with 15 surrounding sentences. 
We experimented with four BERT models: 
BERTurk, BioBERTurk, PubMedBERT, and 
XLM-RoBERTa. The BERTurk model was pre-
trained on Turkish text sourced from Wikipe-
dia dumps, and we selected it because the 
model’s Turkish language matched our train-
ing data. The BioBERTurk model was pre-
trained on top of BERTurk with Turkish bio-
medical texts and radiology theses, making 
it the most suitable fit for our application do-
main and language. The PubMedBERT model 
was pre-trained on English text sourced from 
the abstracts and articles of academic bio-
medical publications, and we selected it be-
cause its medical data matched our domain. 
The XLM-RoBERTa model was pre-trained on 
text from Wikipedia dumps containing 100 
languages (including Turkish), and we chose 
it because medical terms tend to remain con-
sistent across multiple languages.

2. Adaptive span enumeration: A span 
is a group of adjacent tokens that can be 
either a single token or a combination of 
many. We created it by concatenating token 
representations. The usage of suffixes in the 
Turkish language results in shorter sentenc-
es despite longer word lengths. For instance, 
the English phrase “the nasogastric tube has 
been pushed forward” translates to “nazo-
gastrik tüp ileri itildi” or “nazogastrik tüp iler-

Main points

•	 Precise data are extracted from radiology re-
ports to address the challenges of retrieving 
information from unstructured reports.

•	 Named entity recognition is used to identify 
observations and symptoms, even in low-re-
source languages such as Turkish.

•	 Diagnostic precision is improved and deci-
sion-making expedited to foster improved 
patient care and healthcare outcomes.
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letildi” in Turkish, consisting of four- or three-
word sentences instead of the seven-word 
sentence in English. Although DYGIE++ was 
originally developed using English, we mod-
ified our model to accommodate Turkish. We 
set the maximum number of tokens per span 
to four instead of the default limit of eight 
used in English experimentally, as we ob-
tained the best performance using this value.

3. Span graph propagation: This step 
generates a multidirectional graph by com-
puting the connections between spans. 
Spans are considered connected if they are 
likely to be related or refer to the same top-
ic (coreference). We were interested in the 
coreference propagation in this step, which 
is crucial for identifying references to an en-

tity throughout the document. Therefore, 
once we had the entity type of one reference, 
we could apply it to all the other references 
in the document.

4. Named entity classification: In the final 
step, a two-layered feed-forward neural net-
work was used as a scoring function to make 
predictions for named entities.

For the experiment, we partitioned the 
1,056 reports in the labeled dataset into three 
subsets: 75% for training, 15% for testing, 
and 10% for development. The training con-
figuration closely followed that of DYGIE++.4 
The training phase spanned 100 epochs and 
focused on NER; therefore, the loss weights 
for relation extraction, coreference resolu-

tion, and event extraction were set to 0, and 
the weight for NER was set to 1. We used the 
AdamW optimizer,7 with a learning rate of 
1e −3 and weight decay of 0.0. The gradient 
norm was set to 5.0 for stable training with 
a slanted triangular learning rate scheduler. 
We used an NVIDIA V100 graphical process-
ing unit as a CUDA device throughout the ex-
periments. The codebase was in Python. We 
sourced our code from the DYGIE++ GitHub 
code repository of4 (github.com/dwadden/
dygiepp), which was built on the AllenNLP 
framework.8 The loss weights are given as 
NER: 0.5, relation extraction: 0.5,  coreference 
resolution: 0.0,  and event extraction: 1.0.

Statistical analysis

As for the statistical analysis, we used the 
micro F1 score as the standard to evaluate 
and compare the performance of our mod-
els. Numeric values are given as a number 
and  frequency (%). Cohen’s kappa statistic 
was used to evaluate agreement. A P value 
<0.05 was considered statistically significant. 
The study did not require ethics committee 
approval or patient consent.

Results
Our setup comprises four experimental 

combinations differentiated by the BERT 
model, as described under “Token encoding” 
in section 2. Table 3 shows each model’s pre-
cision, recall, and F1 score. The best perform-

Table 1. Imaging types and their frequencies in the labeled dataset of radiology reports

Imaging type Number of reports Percentage

Abdominal radiology 363 34.38%

Thorax radiology 224 21.21%

Neuroradiology 187 17.71%

Vascular and thorax radiology 101 9.56%

Musculoskeletal radiology 66 6.25%

Head and neck radiology 45 4.26%

Vascular and thoracoabdominal radiology 25 2.37%

Vascular and neuroradiology 22 2.08%

Vascular and musculoskeletal radiology 15 1.42%

Vascular and abdominal radiology 5 0.47%

Vascular and neck radiology 3 0.28%

Figure 1. Color-coded example of labeled reports.
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ing model was the BioBERTurk model, with 
an F1 score of 80.1. The BERTurk, PubMed-
BERT, and XLM-RoBERTa models scored 79.1, 
75.9, and 78.3, respectively.

Figure 2 is a bar chart that displays each la-
bel’s F1 score for all four BERT models. We re-
port their respective precision, recall, and F1 
scores using tables in Appendices 1-4. These 
tables offer a label-specific perspective, 
highlighting the strengths and weaknesses 
of each model. We can see that although the 
label “Obs_Present” is the most frequent (oc-
curring 50.65% of the time), it does not have 
the highest F1 score among all the models. 
This affects the micro average F1 score be-
cause labels that occur more frequently con-
tribute more weight to the overall F1 score. 
Conversely, “Symptom_A” has a 0.0 F1 score 
for all models because it lacks examples (only 
16 occurrences) for the model to learn. Con-
sequently, its effect on the overall F1 score is 
negligible.

After receiving constructive feedback 
from the peer reviewers, two radiologists 
who were not involved in the initial study 
evaluated the synthetically generated re-
ports using a Likert scale. The Likert scale 

ranged from 1 to 5, where 1 indicated the 
least resemblance to real-world reports and 
5 indicated the closest resemblance. The re-
sponses were analyzed using Cohen’s kap-
pa statistic (Cohen’s kappa score: 0.92, P < 
0.001). The evaluation of radiology reports 
prepared by the study radiologists achieved 
a high inter-observer agreement among the 
independent radiologists. Furthermore, the 
selected categories on the scale indicated 
that the reports closely resembled real-world 
radiology reports (Figure 3). After the peer-re-
view process, 25% of the data were randomly 
re-annotated (UK) to assess intra-annotator 
agreement. Cohen’s kappa statistic was used 
to evaluate the level of agreement, yielding 
a kappa value of 0.997 (P < 0.0001). This re-
sult indicates a high level of agreement and 
is statistically significant.

The co-occurrence chord diagram and 
matrix of the nine labels are shown in Figures 
4, 5 and Appendices 5, 6.

Discussion
Structured reports have a standardized 

language and are consistently organized 
into ordered sections to enable the auto-

mated or semi-automated abstraction of 
reporting data. In recent years, numerous 
researchers have demonstrated a keen inter-
est in extracting information from unstruc-
tured radiology reports, as almost all reports 
are written in this format. In 2010, Soysal et 
al.9 proposed a natural language processing 
(NLP) system that converts radiology reports 
into Turkish. The initial medical information 
extraction system in Turkish, TRIES, follows a 
three-step conversion process. It begins with 
a morphological analysis of every word in the 
sentence, followed by NER and relation ex-
traction. Its purpose is to match the sentence 
with a set of rule templates. An example is 
the sentence “The liver is 14 cm in height,” 
which is analyzed as “Liver vertical tall + NESS 
+ POSS3SG 14 cm + COP,” later transformed 
into “[entity: Liver] [attribute: height] + POS-
S3SG [value: NUMERIC: 14 cm] + COP,” and fi-
nally converted to “Liver.height = 14cm.” The 
TRIES system has achieved results with a 93% 
recall and 98% precision rate. However, this 
method is limited because rule-based sys-
tems fail if a relationship cannot be matched 
to a specific rule.

Little research related to the present 
study has been conducted in the Turkish lan-
guage domain. This is a notable shortcoming 
considering the considerable advancements 
published in the literature, especially in pre-
trained deep learning models. One of the 
most commonly used pre-trained language 
models for creating downstream NLP appli-
cations via fine-tuning is BERT, which con-
siders the entire context of words by look-

Table 2. Label distribution for the dataset of radiology reports

Code Name Description Frequency Percentage

Obs_Present Observations present Presence of radiological features, identifiable pathophysiological 
processes, or diagnostic diseases 12,848 34%

Obs_Absent Absence of observations Absence of radiological features, identifiable pathophysiological 
processes, or diagnostic diseases 3,165 8.38%

Obs_Uncertain Uncertain observations Lack of certainty about a radiological feature, pathophysiological 
process, or diagnostic disease 1,102 2.92%

Obs_Technical Technical observations Technical situation that describes radiological techniques such as 
acquisitions 1,546 4.09%

Obs_Anatomy Anatomical observations Anatomical parts such as “vertebrae” 16,872 44.65%

Obs_Advice Observations of advice Tests and examinations recommended by the radiologist 
regarding the current diagnosis and treatment process 489 1.29%

Symptom_P Presence of a symptom A specific clinical symptom communicated by the clinician to the 
radiologist 668 1.77%

Symptom_A Absence of a symptom Absence of a specific clinical symptom communicated by the 
clinician to the radiologist 16 0.04%

Differential_
Diagnosis Differential diagnosis Differential diagnoses that may occur as a result of the current 

findings 1,084 2.87%

Table 3. Results for the BERTurk, BioBERTurk, PubMedBert, and XLM-RoBERTa models

BERT model Precision Recall F1

BERTurk 78.3 79.9 79.1

BioBERTurk 80.0 80.1 80.1

PubMedBERT 75.0 76.9 75.9

XLM-RoBERTa 79.5 77.0 78.3
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ing both left and right in a sentence. This 
model’s innovation lies in its pre-training 
process, which is trained on large amounts 
of data to perform two tasks. First, masked 
language modeling (MLM) requires masked 
words within sentences to be predicted, 
helping BERT understand the word context 
and semantics. Second, next sentence pre-
diction (NSP) predicts if one sentence follows 
another, enabling BERT to grasp sentence 

relationships. With this bidirectional ap-
proach, MLM and NSP allow BERT to capture 
intricate language relationships. In addition, 
BERT’s architecture allows it to be fine-tuned 
for specific language-related tasks such as 
NER. As our task is NER on Turkish data, we 
experimented with four variations of BERT: 
BERTurk,10 BioBERTurk, PubMedBERT,11 and 
RoBERTa-XLM.12

We found no previous studies related to 
deep learning in the Turkish language; there-
fore, we explored other underrepresented 
languages to gain inspiration to help fill 
this gap. In a recent study, Jantscher et al.13 
investigated methods for NER and relation 
extraction from radiology reports in German. 
To achieve their goal, they fine-tuned a BERT 
model and used active learning for domain 
adaptation and training. Three separate data-
sets were utilized in this study. Reports on 
head CT were used to fine-tune the German-
MedBERT14 model, and reports on magnetic 
resonance imaging (MRI) of the head and 
pediatric X-rays were used for domain adap-
tation and training. The researchers aimed 
to demonstrate that domain adaptation and 
active learning enhance the effectiveness of 
NER and relation extraction tasks. The model 
trained on MRI data performed the best, with 
an F1 score of 86.0 for NER and 80.0 for rela-
tion extraction.

In a similar study,15 researchers aimed to 
extract named entities from Polish radiology 
reports. Using a dataset of 1,200 chest X-ray 
reports, the study focused on sequence la-
beling using the inside–outside–beginning 
annotation schema. This annotation schema 
consists of 44 tags representing everyday 
radiological observations while emphasiz-
ing generalization for potential application 
across clinical domains. The experiments 
involved the use of five BERT models: Pol-

Figure 2. Bar chart of the F1 scores of the BERTurk, BioBERTurk, PubMedBert, and XLM-RoBERTa models.

Figure 3. Evaluation of synthetically generated radiology reports by two independent radiologists  
using a Likert scale (1-5). The analysis showed a high inter-observer agreement (Cohen’s kappa score: 0.92,  
P < 0.001), with the majority of scores indicating a strong resemblance to real-world radiology reports.
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ish-roberta-base-v2,16 Polish-distilroberta,16 
Polish-longformer,16 HerBERT,17 and mLUKE.18 
The mLUKE model is a multilingual variant 
of the LUKE model,19 whereas the rest of the 
models were pre-trained only on Polish data. 
The results demonstrated that mLUKE was 
the most effective model, with an F1 score 
of 80.9. Its multilingual nature enhanced the 
domain-specific medical knowledge base 
across all languages. Certain classes exhib-
ited lower-than-expected scores due to the 
complexity and variability within those cat-
egories. By contrast, others performed well 
despite limited annotated examples.

Another study20 focuses on NER applied 
to chest CT reports in Japanese. The data-
set consists of 118,155 reports, 540 of which 
were annotated by medical experts. Three 
deep learning models (BiLSTM-CRF, BERT, 
and BERT-CRF) were used to train NER. Each 
of the three models was pre-trained on Wiki-
pedia data and CT reports. The labeled data-
set was used to evaluate the models, which 
showed promising results in extracting clin-
ical information from the Japanese chest 
CT reports. The BiLSTM-CRF model had the 
highest micro F1 score, with 95.4 for CT and 
94.3 for Wikipedia. Higher F1 scores were ob-
served across all models when pre-training 
with CT reports instead of only Wikipedia. 
Analysis of the effect of various modifiers on 
performance shows that the “certainty mod-
ifier” entity had a favorable impact, resulting 
in higher F1 scores. Conversely, the “change 
modifier” and “characteristics modifier” enti-
ties reduced performance, leading to lower 
F1 scores.

The results of the present study demon-
strate that, among the different BERT mod-
els, BioBERTurk performed the best. We attri-
bute our model’s improved performance to 
adaptive span enumeration. We ran several 
iterations to determine the optimal value for 
the maximum number of tokens per span 
for the Turkish language. We set it at four in-
stead of the default value of eight in English 
experimentally, as detailed in the Material 
and Methods section under “Adaptive span 
enumeration.” This estimation resulted in a 
1.5-point increase in BioBERTurk’s F1 score. 
We believe this value to be specific to the 
Turkish language, and a similar concept can 
be applied to other languages.

The BERTurk model closely followed 
BioBERTurk in performance (79.1%) due to its 
Turkish language embeddings. This is a BERT 
model that was pre-trained from scratch us-
ing only Turkish text. Therefore, we expected 
it to perform better than multilingual models 

Figure 4. Co-occurrence chord diagram representing the total number of times each label pair appeared 
together across all reports. In this case, repetitions within the same document are also considered.

Figure 5. Co-occurrence chord diagram representing the frequency of unique label pairs. Even if the same 
label pairs appear multiple times, they are counted only once, illustrating the occurrence frequency of these 
unique combinations.
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such as XLM_RoBERTa and English-only mod-
els. The XLM-RoBERTa model performed rea-
sonably well (78.3%), but, as expected, it was 
too generic because it was trained on data 
from 100 languages. In addition, it is a much 
larger model, and given its size, we needed 
a larger dataset for fine-tuning to have a no-
ticeable impact. Finally, PubMedBERT is an 
English-only model that is pre-trained  using 
English-only medical domain texts. Although 
the medical terminology in English and 
Turkish overlaps to a certain degree due to 
the heavy use of Latin in medicine, as men-
tioned before, Turkish is very different from 
English, especially in terms of the heavy use 
of suffixes that can modify medical concepts 
in Latin. For example, “appendix” in English 
can be translated as “Apendiks,” “Apendiksin,” 
or “Apendiksinin,” with the suffix “-in” indicat-
ing possession or a relationship. Similarly, 
“intubation” in English can be expressed as 
“Entübasyon,” “Entübasyonu,” with the suf-
fix “-u” for possession, or “Entübasyonunda,” 
with the locative suffix “-da” to indicate loca-
tion within a procedure, and so on. There can 
be a large number of variations with many 
different suffixes. Due to these profound dif-
ferences between languages, we observed 
a significant drop in performance (80.1% 
vs. 75.9%) when we used PubMedBERT. For 
PubMedBERT,  fine-tuning the model with a 
large number of Turkish medical texts may 
increase its performance. A possible solution 
for PubMedBERT to be considered in future 
studies is the use of adapters.21 This method 
of fine-tuning adds extra layers to the mod-
el while retaining the existing ones, which 
are frozen during training. In this manner, 
the model preserves its medical knowledge 
by not updating the frozen weights and in-
corporates the Turkish context by updating 
the introduced weights. Our results indicate 
that it may be difficult to apply deep learning 
models that have been pre-trained on differ-
ent languages or even multi-lingual models 
in domain specific applications such as med-
icine; however, it is worth using pre-trained 
models in the target language, adjusting hy-
per parameters, and applying domain specif-
ic fine-tuning. 

Our resources, mainly medical data in 
Turkish, are limited due to the low number 
of datasets and studies. In fact, our dataset 
of 1,056 annotated radiology reports is a 
first in the Turkish medical domain. There are 
also restrictions for unlabeled data, both in 
terms of quantity and quality, in the Turkish 
medical domain compared with the English 
domain. These restrictions affect our model 

in several ways. First, we can discuss the do-
main specialization of large language models 
such as BERT. Although we used BioBERTurk 
as a base model that has been fine-tuned for 
the Turkish medical domain, we might ob-
tain better results by further fine-tuning this 
model if we had access to a large number of 
anonymized Turkish radiology reports or re-
lated literature in Turkish. Second, we used 
just 1,056 Turkish radiology reports, which 
were manually created by radiology experts 
to mimic actual patient reports. This number 
can be increased in two ways. One is to in-
volve more experts, which may not be feasi-
ble without vital funding and organization, 
currently beyond our capabilities. The other 
is to use techniques such as data augmenta-
tion,22 which are useful for increasing the size 
of the labeled dataset, although the quality 
would be debatable. Furthermore, these 
medical text data augmentation methods 
are devised for English biomedical texts, and 
applying these directly to Turkish radiology 
reports may not be feasible due to the key 
differences between English and Turkish and 
the agglutinative nature of Turkish, as previ-
ously discussed. 

We note that the four models exhibit dif-
ferent performance levels for each label. For 
instance, XLM-RoBERTa performs best for 
“Obs_Technical,” as technical terms are not 
unique to the Turkish language and were 
pre-trained in multiple languages. Moreover, 
BioBERTurk has excellent results for “Symp-
tom_P,” as it was trained on the relevant Turk-
ish biomedical data. The “Obs_Uncertain” 
label posed challenges for all four models 
because uncertainties usually involve nega-
tion-related terms such as “could not be mea-
sured” or “evaluation is not optimal.” Conse-
quently, most of these predictions tend to be 
misclassified as “Obs_Absent.” The BERTurk 
model demonstrated the best performance 
for this specific class label because it is spe-
cially trained for the Turkish language. How-
ever, the unexpected underperformance of 
BioBERTurk in predicting the “Obs_Uncertain” 
label is noteworthy, given its pre-training on 
Turkish biomedical data. This performance 
discrepancy warrants a closer examination of 
pre-training data specificity.

The F1 score of 89.0 for Polish radiology 
reports in13 closely aligns with our obtained 
score of 80.1. The dataset sizes are similar; 
ours has 1,056 instances, whereas theirs has 
1,200. In addition, as in our study, certain 
classes are high frequency and yield lower 
F1 scores. We believe that the limited linguis-
tic resources in both the Polish and Turkish 

languages specific to radiology reporting 
are the reason for this commonality. The F1 
score reported by Sugimoto et al.20 on Jap-
anese data exceeds ours, and this difference 
can be attributed to the substantial amount 
of fine-tuning data they used, totaling over 
100,000 reports. In our study, we faced con-
straints in conducting extensive fine-tuning 
due to the limited data available. The dis-
crepancy in fine-tuning resources under-
scores the impact of data volume on model 
performance and highlights the importance 
of considering the scale of training data in 
achieving optimal results. Despite these dif-
ferences, we see parallel trends in the out-
comes of certainty labels.

This study has several limitations that 
warrant consideration. First, the dataset used 
in this study was synthetic, created by ra-
diologists to mimic actual Turkish radiology 
reports. This limitation could affect the gen-
eralizability of the findings to real-world ap-
plications. Second, a larger dataset, including 
actual anonymized reports, could enhance 
the robustness and performance of the mod-
els, particularly in identifying less frequent 
entity labels such as “Symptom_A.” Third, al-
though the study focuses on Turkish radiol-
ogy reports, the findings may not be directly 
applicable to other low-resource languages 
without language-specific adaptations. Simi-
lar adjustments would be necessary for other 
languages with unique linguistic features. 
Fourth, despite the strong performance of 
the BioBERTurk model, the study was limited 
to evaluating only four BERT-based models. 
Exploring additional model architectures or 
integrating ensemble approaches could po-
tentially yield improved results. Finally, due 
to resource constraints, fine-tuning was per-
formed with limited training data. Access to 
a larger corpus of Turkish biomedical texts or 
radiology reports could further optimize the 
performance of the deep learning models. 

In our future research, we plan to use the 
mentioned insights to propose a pretrained 
BERT model for biomedical applications 
in Turkish. We also plan to develop a lan-
guage-specific approach to determine opti-
mal token span lengths during adaptive span 
enumeration. These initiatives will enhance 
the accuracy and efficiency of information 
extraction models, as demonstrated in our 
research. Based on recent developments in 
artificial intelligence (AI), mainly in large lan-
guage models, we also plan to experiment 
with  these models, such as GPT-4o and Lla-
ma 3, and with different sized models, and 
compare their performances. 
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In conclusion, our study highlights the 
critical role of language-specific adaptations 
and domain-relevant fine-tuning in enhanc-
ing NER for Turkish radiology reports. The 
introduction of BioBERTurk and the adap-
tive span enumeration mechanism proved 
instrumental in achieving the highest per-
formance among the tested models. By ex-
perimentally determining an optimal span 
length tailored to the Turkish language, we 
demonstrated the necessity of customiz-
ing hyperparameters to accommodate lin-
guistic features such as agglutination and 
complex suffix structures. Furthermore, this 
research is built on the first-ever NER data-
set derived from Turkish radiology reports, 
a resource labeled by radiology experts. This 
dataset not only reflects the unique linguis-
tic and domain-specific challenges of Turk-
ish but also lays the groundwork for future 
advancements in low-resource medical NLP. 
Our work also underscores the challenges 
posed by limited annotated datasets and the 
importance of future efforts in expanding 
high-quality medical text resources. By le-
veraging advances in large language models 
and further fine-tuning with domain-specific 
data, we aim to push the boundaries of infor-
mation extraction in low-resource languag-
es. Ultimately, this research contributes to 
the development of AI tools that streamline 
clinical workflows, improve diagnostic preci-
sion, and enhance patient care. We hope our 
research contributes to continued innova-
tion that enables healthcare practitioners to 
access standardized and structured data to 
improve patient care.
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Appendix 1. Labels results for BERTurk model

Labels Precision Recall F1

Obs present 0.717 0.697 0.706

Obs absent 0.890 0.899 0.894

Obs uncertain 0.559 0.352 0.432

Obs technical 0.708 0.723 0.716

Obs anatomy 0.849 0.885 0.866

Obs advice 0.478 0.550 0.512

Symptom P 0.688 0.579 0.629

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.580 0.797 0.671

Appendix 2. Labels results for BioBERTurk model

Labels Precision Recall F1

Obs present 0.702 0.691 0.697

Obs absent 0.883 0.874 0.879

Obs uncertain 0.560 0.519 0.538

Obs technical 0.787 0.787 0.787

Obs anatomy 0.846 0.876 0.861

Obs advice 0.520 0.650 0.578

Symptom P 0.647 0.579 0.611

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.585 0.814 0.681

Appendix 3. Labels results for PubMedBERT model

Labels Precision Recall F1

Obs present 0.673 0.635 0.653

Obs absent 0.884 0.884 0.884

Obs uncertain 0.500 0.407 0.449

Obs technical 0.708 0.723 0.716

Obs anatomy 0.805 0.866 0.835

Obs advice 0.440 0.550 0.489

Symptom P 0.533 0.421 0.471

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.536 0.763 0.629

Appendix 4. Labels results for XLM-RoBERTa model

Labels Precision Recall F1

Obs present 0.695 0.616 0.653

Obs absent 0.892 0.879 0.886

Obs uncertain 0.606 0.370 0.459

Obs technical 0.867 0.828 0.848

Obs anatomy 0.853 0.876 0.864

Obs advice 0.476 0.500 0.488

Symptom P 0.750 0.474 0.581

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.628 0.831 0.715
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Appendix 5. A co-occurrence matrix showing the total number of times each label pair appeared together across all reports. Repetitions 
within the same document are included in the calculations

Obs_
Absent

Obs_
Technical

Obs_
Anatomy

Obs_
Present

Differential 
diagnosis

Obs_
Advice

Obs_
Uncertain

Symptom_P Symptom_A

Obs_Absent 32694 14895 167727 125985 10489 4715 10774 7010 164

Obs_Technical 14895 6950 81788 62152 5077 2413 5763 3179 83

Obs_Anatomy 167727 81788 918308 708388 56819 26141 60585 35245 851

Obs_Present 125985 62152 708388 543428 43728 20306 46456 26866 697

Differential 
diagnosis 10489 5077 56819 43728 3898 1785 3549 2375 65

Obs_Advice 4715 2413 26141 20306 1785 752 1896 972 20

Obs_Uncertain 10774 5763 60585 46456 3549 1896 4258 2332 48

Symptom_P 7010 3179 35245 26866 2375 972 2332 2190 47

Symptom_A 164 83 851 697 65 20 48 47 2

Appendix 6. A co-occurrence matrix showing the frequency of unique label pairs. Each pair is counted only once, regardless of how many 
times it appears within or across documents

  Obs_
Absent

Obs_
Technical

Obs_
Anatomy

Obs_
Present

Differential 
diagnosis

Obs_
Advice

Obs_
Uncertain

Symptom_P Symptom_A

Obs_Absent 0 332 334 334 316 254 304 246 15

Obs_Technical 332 0 332 332 315 253 303 245 15

Obs_Anatomy 334 332 0 334 316 254 304 246 15

Obs_Present 334 332 334 0 316 254 304 246 15

Differential 
diagnosis 316 315 316 316 0 244 288 234 15

Obs_Advice 254 253 254 254 244 0 232 182 10

Obs_Uncertain 304 303 304 304 288 232 0 223 13

Symptom_P 246 245 246 246 234 182 223 0 14

Symptom_A 15 15 15 15 15 10 13 14 0


