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Gastrointestinal bleeding detection on digital subtraction angiography 
using convolutional neural networks with and without temporal 
information

PURPOSE
Digital subtraction angiography (DSA) offers a real-time approach to locating lower gastrointes-
tinal (GI) bleeding. However, many sources of bleeding are not easily visible on angiograms. This 
investigation aims to develop a machine learning tool that can locate GI bleeding on DSA prior to 
transarterial embolization.

METHODS
All mesenteric artery angiograms and arterial embolization DSA images obtained in the interven-
tional radiology department between January 1, 2007, and December 31, 2021, were analyzed. 
These images were acquired using fluoroscopy imaging systems (Siemens Healthineers, USA). 
Thirty-nine unique series of bleeding images were augmented to train two-dimensional (2D) and 
three-dimensional (3D) residual neural networks (ResUNet++) for image segmentation. The 2D 
ResUNet++ network was trained on 3,548 images and tested on 394 images, whereas the 3D Re-
sUNet++ network was trained on 316 3D objects and tested on 35 objects. For each case, both 
manually cropped images focused on the GI bleed and uncropped images were evaluated, with a 
superimposition post-processing (SIPP) technique applied to both image types. 

RESULTS
Based on both quantitative and qualitative analyses, the 2D ResUNet++ network significantly 
outperformed the 3D ResUNet++ model. In the qualitative evaluation, the 2D ResUNet++ model 
achieved the highest accuracy across both 128 × 128 and 256 × 256 input resolutions when en-
hanced with the SIPP technique, reaching accuracy rates between 95% and 97%. However, despite 
the improved detection consistency provided by SIPP, a reduction in Dice similarity coefficients was 
observed compared with models without post-processing. Specifically, the 2D ResUNet++ model 
combined with SIPP achieved a Dice accuracy of only 80%. This decline is primarily attributed to 
an increase in false positive predictions introduced by the temporal propagation of segmentation 
masks across frames.

CONCLUSION
 

Both 2D and 3D ResUNet++ networks can be trained to locate GI bleeding on DSA images prior to 
transarterial embolization. However, further research and refinement are needed before this tech-
nology can be implemented in DSA for real-time prediction. 

CLINICAL SIGNIFICANCE
Automated detection of GI bleeding in DSA may reduce time to embolization, thereby improving 
patient outcomes.
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Gastrointestinal (GI) bleeding involves 
active hemorrhaging from blood ves-
sels within the GI tract. In 5%–10% of 

cases, patients require either surgery or tran-
scatheter arterial embolization.1 To perform 
transcatheter embolization, interventional 
radiologists often use digital subtraction an-
giography (DSA) to image the hemorrhage 
in real time. DSA works by visualizing con-
trast-opacified vessels and subtracting sur-
rounding anatomical structures, such as soft 
tissues and bone, to provide a clearer view 
of the vascular system. The resulting images 
reveal areas where contrast “pools,” indicat-
ing the site of bleeding to the interventional 
radiologist.2 Although DSA offers a real-time 
method for locating bleeding, some sources 
may not be easily visible on angiograms. A 
neural network used as a decision support 
tool may assist radiologists in identifying 
bleeding sites prior to transcatheter arterial 
embolization. 

Convolutional neural networks (CNNs) 
have demonstrated both accuracy and ef-
ficiency in object detection within images.3 
Ronneberger et al.4 pioneered the U-Net 
architecture, an extension of the fully con-
volutional network, which includes a con-
tracting path to capture image context and 
an expanding path to enable precise local-
ization for segmentation. Neural networks 
based on the ResUNet architecture have 
addressed the high computational demands 
of three-dimensional (3D) convolutional 
networks.5 Zhang et al.6 implemented this 
design for road detection using a combi-
nation of upsampling and downsampling 
residual blocks. This model was further de-
veloped by Jha et al.7, who proposed the 
residual neural networks (ResUNet++) archi-
tecture and tested it on a segmentation task 
to identify polyps in two-dimensional (2D) 

colonoscopy images. Given that ResUNet++ 
outperformed both the original ResUNet and 
U-Net models in image segmentation,7 this 
architecture serves as the foundation for our 
model, which aims to segment GI bleeding 
on DSA images. 

This study aims to investigate the utility 
of a deep learning approach for the auto-
mated detection of GI bleeding on DSA im-
ages, specifically by comparing 2D and 3D 
ResUNet++ architectures. We hypothesized 
that both models could identify bleeding 
sites, but that one may outperform the other. 
Our rationale for using a deep learning ap-
proach stems from the temporal variability 
and subtlety of GI bleeds, which may evade 
human detection on sequential angiograph-
ic images. Automated segmentation could 
assist radiologists by identifying bleeding 
pixels in real time, potentially reducing time 
to embolization. This study also evaluates a 
novel temporal consistency algorithm–su-
perimposition post-processing (SIPP)–to 
determine whether incorporating temporal 
bleed memory improves segmentation per-
formance across sequences. We address the 
following research questions. (1) Can deep 
learning accurately identify bleeding on 
DSA? (2) How does a 2D model compare with 
a 3D model in this context? (3) Does tempo-
ral information improve performance when 
integrated through post-processing?

It is also critical to consider the clinical 
impact of GI bleeding segmentation in DSA 
without introducing workflow delays. In 
practice, a supportive model must identify 
bleeding sites faster than the interventional 

radiologist to improve procedural outcomes. 
Earlier identification could reduce contrast 
volume, lower radiation exposure, and short-
en procedure times. 

Methods

Image datasets for training and testing

Mayo Clinic Phoenix approved this 
study as exempt on 01/31/2024 due to its 
retrospective nature (IRB application #: 24-
000309). Between 2007 and 2021, a total of 
96 patients underwent mesenteric artery 
angiography or arterial embolization DSA 
procedures for suspected GI bleeding. Of 
these, 70 patients showed no active extrav-
asation on angiography and were excluded. 
The remaining 26 patients, who demonstrat-
ed confirmed active hemorrhage, were in-
cluded in the study, as shown in Figure 1. No 
images were excluded based on patient age, 
motion artifacts, or image corruption. From 
the 26 patients, 39 unique image series pos-
itive for active hemorrhage were identified 
by an interventional radiologist and selected 
for neural network training. These cases in-
volved hemorrhaging in the small and large 
intestines. On average, each series contained 
11 bleeding images. To avoid inflated model 
performance, data were split at the patient 
level for training and testing. The bleeding 
images were cropped to highlight the hem-
orrhage in higher resolution. The dataset was 
then augmented by replicating each image 
nine times, systematically shifting the bleed 
location to the following regions: upper-left, 
upper-center, upper-right, middle-left, cen-

Main points

• Automated image segmentation may play a 
beneficial role in detecting gastrointestinal 
(GI) bleeding in real time in digital subtrac-
tion angiography (DSA) prior to transarterial 
embolization.

• The three-dimensional (3D) residual neural 
networks use the temporal resolution from 
the DSA sequence to predict the bleeding 
location.

• The two-dimensional neural network out-
performed the 3D neural network in seg-
menting GI bleeding on images.

• Increasing image resolution and using a 
graphics processing unit may improve both 
the accuracy of image segmentation and 
the processing speed, respectively.

Figure 1. Criteria and number of patients from initial retrieval to the final study cohort. GI, gastrointestinal.
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ter, middle-right, lower-left, lower-center, 
and lower-right. This approach increased 
the dataset size by 900%. Segmentation 
masks were created manually using Photo-
shop (Adobe Inc., San Jose, CA, USA) with a 
thresholding tool to isolate the bleeding. The 
segmentations displayed bleeding areas in 
white on a solid black background to pro-
duce binary images. The same augmentation 
technique was applied to the segmentation 
masks to ensure proper pixel alignment with 
the original images. Table 1 summarizes the 
number of GI bleeding-positive and-nega-
tive images in the test set after augmenta-
tion.

Although 70 patients had no visible ex-
travasation, including all of their image se-
quences as negative controls would have cre-
ated a heavily imbalanced dataset. Instead, 
non-bleeding frames from within the same 
DSA sequences of the 26 bleeding-positive 
patients were used. These frames provided 
sufficient negative control data for training 
and testing while preserving representative 
angiographic conditions and avoiding over-
representation of non-bleeding cases. More-
over, the model’s task was to identify where 
bleeding occurred, rather than whether 
bleeding was present. In this context, even 
within bleeding-positive images, the major-
ity of pixels are negative for bleeding. 

Both 128 × 128-pixel and 256 × 256-pixel 
images were used to train separate 2D CNNs, 
whereas only 128 × 128-pixel images were 
used to train a 3D CNN for image segmen-
tation. A post-processing technique–super-
imposing all masks within a series into a sin-
gle mask for final image segmentation–was 
applied to both 2D and 3D segmentations. 
In total, these three networks were evaluat-
ed across four distinct testing scenarios: (1) 
uncropped images from the DSA sequence, 
(2) cropped images focusing on the bleed, (3) 
uncropped images with the SIPP technique 
applied, and (4) cropped images with the 
SIPP technique. 

Superimposition post-processing tech-
nique

The SIPP technique algorithm was devel-
oped to address the temporal inconsistency 
of GI bleeding predictions across angio-
graphic image sequences. Bleeding may not 
be clearly visible in every frame. To mitigate 
this, SIPP enforces temporal continuity by 
propagating the presence of bleeding pix-
els forward through the predicted image 
sequence. For each frame in the sequence, 
the model produces a binary segmentation 

mask , where each pixel is labeled either as 
1 (bleeding present) or 0 (no bleeding). The 
mask  is a 2D grid with the 
same height (H) and width (W) as the orig-
inal image and represents the classification 
of each pixel. SIPP modifies these predictions 
by updating each new mask  to include 
any pixel that was previously marked as 
bleeding. This is defined as:

Where  represents a logical OR opera-
tion performed on all pixels between the 
current prediction  and the accumulated 
mask from the previous frame . This rule 
ensures that once a pixel is marked as bleed-
ing, it remains labeled as such in all following 
frames of the DSA. This effectively preserves 
prior bleeding evidence even if the current 
frame is less confident. This simple yet ef-

fective mechanism improves temporal con-
sistency and reduces missed detections due 
to frame-level variability. A flowchart is pro-
vided in Figure 2 to further explain the SIPP 
technique. 

Deep neural network architecture

Both a 3D and a 2D ResUNet++ were con-
structed based on the architecture shown in 
Figure 3. A single DSA frame served as the 
input image for the 2D network, whereas 
the entire DSA series served as the input for 
the 3D network. After entering the network, 
the image passed through a series of con-
volutional layers with a 3 × 3 kernel size and 
increasing numbers of filters (16, 32, 48, and 
64), referred to as the encoding phase. Each 
convolutional layer was followed by batch 
normalization to improve training speed and 

Figure 2. Schematic of the image segmentation pipeline with the optional superimposition post-processing 
technique. Each image sequence (cropped or uncropped) is passed through a ResUNet++ model configured 
as either 2D (128 × 128 or 256 × 256) or 3D (128 × 128) to generate frame-wise predicted masks. If applied, 
the SIPP technique performs a logical OR operation between the current and previous masks to enhance 
temporal consistency in bleeding detection. SIPP, superimposition post-processing; 2D, two-dimensional; 
3D, three-dimensional; ResUNet++, residual neural networks.

Table 1. The number of images positive for gastrointestinal bleeding and the number 
of control images negative for gastrointestinal bleeding were tabulated for each of the 
different models

GI bleed images Control images

2D uncropped 128 × 128 343 95

2D cropped 128 × 128 321 73

2D uncropped 256 × 256 354 84

2D cropped 256 × 256 321 73

3D uncropped 128 × 128 343 281

3D cropped 128 × 128 273 287

2D uncropped 128 × 128 w/SIPP 343 281

2D cropped 128 × 128 w/SIPP 3195 2421

2D uncropped 256 × 256 w/SIPP 354 270

2D cropped 256 × 256 w/SIPP 3196 2420

3D uncropped 128 × 128 w/SIPP 319 241

3D cropped 128 × 128 w/SIPP 273 287

GI, gastrointestinal; SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.
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stability by standardizing the inputs. A rec-
tified linear unit (ReLU) activation function 
was then applied to introduce non-linearity, 
enabling the network to learn complex pat-
terns and shapes. The spatial dimensions of 
the feature maps were reduced through 2D 
max pooling after each convolutional layer, 
allowing the network to retain the most im-
portant features. After the encoding phase, 
the features were upsampled back to the 
original image size using transposed convo-
lutions with a 3 × 3 kernel size and decreas-
ing numbers of filters (64, 48, 32, and 16). 
Each layer was again followed by batch nor-
malization and ReLU activation. At each step 
of the decoding path, the feature maps were 
concatenated with the corresponding fea-
ture maps from the encoding phase, allow-
ing the network to leverage both low-level 
and high-level features for more accurate 
segmentation. The final output layer con-
sisted of a 1 × 1 convolutional layer with a 
single filter and sigmoid activation. The re-
sulting segmentation map assigned each 
pixel a predicted class. Both the 2D and 3D 
ResUNet++ models described in this study 
were deep learning architectures designed 
for semantic segmentation tasks. Although 
implemented as machine learning models 
during training and inference, their structur-
al design–comprising convolutional layers, 
encoding–decoding paths, and feature con-
catenations–was fundamentally that of deep 
learning architectures.

The convolutional ResUNet++ networks 
were implemented using the Keras frame-
work8 with a TensorFlow backend (Google, 
Inc.),9 using Python version 3.9. All experi-
ments were performed on a computer with 
an Intel Core i7-8700 central processing unit 
(CPU) @ 3.20 GHz (Intel). To prevent overfit-
ting, a smaller learning rate of 1.0 × 10-4 was 
used during training to avoid issues such as 
model instability or failure to converge. Data 
augmentation was also applied to artificially 
increase dataset variability, further helping 
to mitigate overfitting. The architecture was 
optimized using the Adam optimizer. A batch 
size of 20 and 20 training epochs were used 
for each experiment to maintain consistency. 
Binary cross-entropy loss was employed to 
optimize the segmentation task.

Quantitative evaluation

The MATLAB software (MathWorks, 
Natick, MA, USA) was used to quantify the 
results from predicted and actual masks by 
measuring mask overlap. A pixel-by-pixel 
analysis identified true positive pixels (TPP), 
true negative pixels (TNP), false positive pix-

els (FPP), and false negative pixels (FNP). TP 
and TN values were calculated by dividing 
TPP and TNP by the respective numbers of 
positive and negative pixels in the ground 
truth. FP and FN values were calculated by 
dividing FPP and FNP by the total number 
of pixels in the ground truth, respectively. 
These scores were computed for each of the 
12 experiments. Dice similarity coefficients 
(DSCs) were calculated to quantitatively 
assess the spatial overlap between the pre-
dicted segmentation masks and the ground 
truth annotations. For each model and imag-
ing configuration, the Dice coefficients were 
computed on a per-sample basis and sum-
marized as mean values with corresponding 
95% confidence intervals (CIs). All Dice analy-
sis was performed as part of the quantitative 
evaluation.

Qualitative evaluation

Although quantitative metrics provided 
objective measures of segmentation accura-
cy, a qualitative evaluation was also conduct-
ed to assess clinical relevance. This evalua-
tion was performed by a single evaluator–a 
medical student–who visually compared the 
predicted segmentation masks with both 
the ground truth masks and the original DSA 
images. Each image was classified as TP, TN, 
FP, or FN using the same definitions applied 
in the quantitative evaluation. To aid in the 
classification process, a MATLAB script was 
used to help identify TN, FP, and FN images. 
A prediction was considered a TP if the white 
pixels in the predicted mask overlapped with 
those in the ground truth mask. This overlap 
was initially assessed visually and subse-
quently verified to ensure at least one pixel 
of overlap, which served as a safeguard to 
minimize human error in classification. This 
minimal overlap threshold was intentional-
ly selected based on the model’s intended 

clinical use: to serve as a real-time assistive 
tool during embolization procedures. In such 
settings, even a small correctly flagged area 
could be sufficient to prompt further inves-
tigation by an interventional radiologist. The 
model is not intended to deliver volumetric 
precision but rather to alert clinicians to po-
tential regions of bleeding. Cases where the 
white pixels of the predicted and ground 
truth masks overlapped but also included 
some FP areas were generally classified as 
TPs, unless the FP region exceeded 10% of 
the image area. All ground truth segmen-
tation masks were manually created using 
a thresholding method and validated by a 
team of fellowship-trained interventional 
radiologists to ensure accuracy before com-
parison.

Statistical analysis

A one-way analysis of variance single-fac-
tor test was conducted in MATLAB to deter-
mine the statistical significance within the TP 
results of the quantitative evaluation. An α 
value of 0.05 was selected, with the null hy-
pothesis stating that there is no statistically 
significant difference among the various net-
works. If the P values obtained from the anal-
ysis were less than α, the null hypothesis was 
rejected, indicating a statistically significant 
difference between the networks. In cas-
es where such a difference was detected, a 
Tukey–Kramer post-hoc test was performed 
to identify which networks exhibited this dis-
parity.

Results

Quantitative evaluation

The accuracy, intersection over union 
(IoU), loss, and precision obtained during 
the initial training and testing of the 2D 128 

Figure 3. Neural network architecture used in both the 2D ResUNet++ and 3D ResUNet++ models. SIPP, 
superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural 
networks.
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× 128 ResUNet++, 2D 256 × 256 ResUNet++, 
and 3D 128 × 128 ResUNet++ models are 
presented in Table 2. The accuracy and preci-
sion scores were comparable across all three 
networks. The 3D 128 × 128 ResUNet++ ex-
hibited the lowest IoU at 0.06.

Depicted in Figure 4 are the accuracy 
scores for the 12 different 2D and 3D Re-
sUNet++ structures based on a DSA frame-
wise basis. These results are summarized in 
Table 3, whereas outcomes of the statistical 
analysis are presented in Table 4. A statistical-
ly significant improvement in the accuracy 
score was observed using the SIPP technique 
for all six different ResUNet++ structures: 
2D uncropped 128 × 128, 2D cropped 128 × 
128, 2D uncropped 256 × 256, 2D cropped 
256 × 256, 3D uncropped 128 × 128, and 
3D cropped 128 × 128 compared with the 
control trial. Notably, there was no statisti-
cal significance between the 2D uncropped 
128 × 128 model and the 2D uncropped 
256 × 256 model, the 2D uncropped 128 × 
128 model and the 3D uncropped 128 × 128 
model, the 2D cropped 128 × 128 model and 
the 2D cropped 256 × 256 model, and the 2D 
uncropped 256 × 256 and the 3D uncropped 
128 × 128 model when the SIPP method was 
not used. The largest mean accuracy values 
were 0.961 and 0.956 for the 2D cropped 128 
× 128 with SIPP model and the 2D cropped 
256 × 256 with SIPP model, respectively. 
There was no statistically significant differ-
ence between the accuracy values for these 
two different networks. Both models had 
a statistically significantly higher accuracy 
than the 3D cropped 128 × 128 model with 
SIPP. The 2D cropped 128 × 128 and the 2D 
cropped 256 × 256 models also maintained 
the highest accuracy for models without 
SIPP, with accuracy scores of 0.853 and 0.812, 
respectively. There was no statistically signif-
icant difference between these two models. 
These models had a statistically significantly 
higher accuracy than the 3D cropped 128 × 
128 model. The 2D uncropped 256 × 256 with 
SIPP model had a statistically significant-
ly higher accuracy than the 2D uncropped 
128 × 128 with SIPP model and the 3D un-
cropped 128 × 128 with SIPP model. Mean-
while, the 2D uncropped 128 × 128 with SIPP 
model had a statistically significantly higher 
accuracy than the 3D uncropped 128 × 128 
with SIPP model.

DSCs for each model configuration, with 
and without SIPP, are summarized in Ta-
ble 5. Compared with their corresponding 
original models, the use of SIPP resulted in 
statistically significant reductions in Dice 
coefficients for the 2D uncropped 128 × 128 

model [from 0.042 (95% CI: 0.0264–0.0575) 
to 0.019 (95% CI: 0.0133–0.0248)] and the 
2D cropped 128 × 128 model [from 0.798 
(95% CI: 0.7720–0.8232) to 0.190 (95% CI: 

0.1839–0.1959)]. Similarly, the 2D cropped 
256 × 256 model exhibited a substantial de-
crease in Dice score when SIPP was applied 
[from 0.797 (95% CI: 0.7708–0.8223) to 0.278 

Figure 4. Bar graph showing differences in the quantitative accuracy of segmentation results for the 
12 testing scenarios. The control represents cases without post-processing, whereas the other cases 
used the superimposition post-processing technique. Error bars indicate one standard deviation. SIPP, 
superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural 
networks.

Table 2. The results from training the 2D ResUNet++ on 128 × 128-pixel and 256 × 256-pixel 
images, as well as the 3D ResUNet++ on 128 × 128-pixel images, are tabulated. The metrics 
of accuracy, intersection-over-union, and precision were included for all three neural 
networks

Method Accuracy IoU Precision

2D 128 × 128 ResUNet++ 0.95 0.62 0.99

2D 256 × 256 ResUNet++ 0.96 0.61 0.98

3D 128 × 128 ResUNet++ 0.96 0.06 0.95

2D, two-dimensional; 3D, three-dimensional; IoU, intersection-over-union; ResUNet++, residual neural networks.

Table 3. The true positive, true negative, false positive, and false negative rates were 
tabulated for the 12 different cases for the quantitative results

True positive True negative False positive False negative

2D uncropped 128 × 128 0.056 0.966 0.034 0.001

2D cropped 128 × 128 0.853 0.996 0.003 0.002

2D uncropped 256 × 256 0.099 0.978 0.022 0.001

2D cropped 256 × 256 0.812 0.997 0.002 0.003

3D uncropped 128 × 128 0.058 0.998 0.002 0.001

3D cropped 128 × 128 0.287 0.999 0.001 0.006

2D uncropped 128 × 128 w/SIPP 0.240 0.919 0.081 0.001

2D cropped 128 × 128 w/SIPP 0.961 0.898 0.098 0

2D uncropped 256 × 256 w/SIPP 0.352 0.972 0.028 0.001

2D cropped 256 × 256 w/SIPP 0.956 0.946 0.051 0.001

3D uncropped 128 × 128 w/SIPP 0.178 0.985 0.015 0.001

3D cropped 128 × 128 w/SIPP 0.573 0.982 0.018 0.003

SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.
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(95% CI: 0.2703–0.2858)]. In contrast, for the 
2D uncropped 256 × 256, 3D uncropped 128 
× 128, and 3D cropped 128 × 128 models, 
although minor changes in Dice coefficients 
were observed, the corresponding 95% CIs 
overlapped. Therefore, these changes are not 
statistically significant based on CI analysis. 
Overall, these results indicate that although 
SIPP altered segmentation performance, its 
effects were not uniformly beneficial across 
all models, and in some cases, it led to con-
siderable declines in segmentation accuracy. 
These results are visually represented in Fig-
ure 5.

Qualitative evaluation

An example image from the 2D cropped 
128 × 128 model, the 2D uncropped 256 × 
256 model, and the 3D cropped 128 × 128 
model is shown in Figure 6. The original im-
age is on the left, the ground truth is in the 
middle, and the predicted image is on the 
right. Each image was reviewed manually for 
quality control to compare the ground truth 
with the predicted image. The results from 
the qualitative evaluation are displayed in 
Table 6 and plotted in Figure 7.

From the highest TP accuracy count to 
the lowest TP count, the twelve networks 
ranked as follows for the qualitative results: 
2D cropped 256 × 256 with SIPP, 2D cropped 
128 × 128 with SIPP, 2D cropped 128 × 128, 
2D cropped 256 × 256, 3D cropped 128 × 
128 with SIPP, 3D cropped 128 × 128, 2D un-
cropped 256 × 256 with SIPP, 2D uncropped 
128 × 128 with SIPP, 3D uncropped 128 × 128 
with SIPP, 2D uncropped 256 × 256, 3D un-
cropped 128 × 128, and 2D uncropped 128 × 
128. The range of TP accuracy was from 0.999 
to 0.122. The models using the SIPP tech-
nique had higher accuracy rates than their 
control counterparts. The ranking order was 
similar to the TP accuracies from the quan-
titative section. The main differences in the 
qualitative list compared with the quantita-
tive list are that 2D cropped 256 × 256 with 
SIPP marginally outperformed 2D cropped 
128 × 128 with SIPP, and 3D cropped 128 × 
128 marginally outperformed 2D uncropped 
256 × 256 with SIPP.

Discussion
The widely used U-Net architecture for 

medical image segmentation is leveraged in 
this study through the ResUNet++ variant. 
ResUNet preserves input dimensions and 
minimizes information loss, as described by 
Yousef et al.10, whereas U-Net++ incorporates 
nested skip connections to enhance seman-

tic segmentation, as detailed by Zhou et al.11 
The effectiveness of ResUNet++ has been 
validated by Jha et al.7, supporting its use 
in segmentation tasks. This study evaluates 
segmentation accuracy using standard anal-
yses similar to those employed in cone-beam 
CT acquisitions for prostate treatments.12

Using 2D ResUNet++ for DSA images of-
fers distinct advantages over 3D ResUNet++. 
Although 3D ResUNet++ benefits from in-
corporating temporal information across 
image sequences, it did not outperform the 
2D model. For uncropped DSA images, 3D 
ResUNet++ performed similarly to 2D Re-
sUNet++, likely because downscaling the 
original 1064 × 1064-pixel images to 128 × 
128 or 256 × 256 pixels led to a loss of crucial 

spatial detail. This limitation was addressed 
by manually cropping the images to focus 
specifically on bleeding regions, allowing 
the bleed to occupy approximately 5% of 
the image area and substantially improving 
training and testing resolution. This process 
improved segmentation accuracy for both 
2D and 3D ResUNet++ models, emphasizing 
the importance of image resolution for accu-
rate GI bleeding localization and favoring 2D 
model performance. These quantitative find-
ings were further supported by qualitative 
assessments. 

The Keras framework8 was used to evalu-
ate accuracy, IoU, loss, and precision metrics 
during the training of both 2D and 3D Re-
sUNet++ models on cropped images. Across 

Table 4. A one-way analysis of variance with a Tukey–Kramer post-hoc test was conducted, 
and the resulting P values were tabulated to compare different models. The significance 
level (α) was set at 0.05. Statistical differences in segmentation accuracy were observed for 
models with P values less than α
Model 1 Model 2 P value

2D uncropped 128 × 128 2D uncropped 128 × 128 w/SIPP <0.001

2D cropped 128 × 128 2D cropped 128 × 128 w/SIPP <0.001

2D uncropped 256 × 256 2D uncropped 256 × 256 w/SIPP <0.001

2D cropped 256 × 256 2D cropped 256 × 256 w/SIPP <0.001

3D uncropped 128 × 128 3D uncropped 128 × 128 w/SIPP <0.001

3D cropped 128 × 128 3D cropped 128 × 128 w/SIPP <0.001

2D uncropped 128 × 128 2D uncropped 256 × 256 0.098 

2D uncropped 128 × 128 3D uncropped 128 × 128 1.000

2D cropped 128 × 128 2D cropped 256 × 256 0.192

2D uncropped 256 × 256 3D uncropped 128 × 128 0.143

2D cropped 128 × 128 w/SIPP 2D cropped 256 × 256 w/SIPP 0.995

2D cropped 256 × 256 w/SIPP 3D cropped 128 × 128 w/SIPP <0.001

2D cropped 128 × 128 w/SIPP 3D cropped 128 × 128 w/SIPP <0.001

2D cropped 256 × 256 3D cropped 128 × 128 <0.001

2D cropped 128 × 128 3D cropped 128 × 128 <0.001

2D uncropped 256 × 256 w/SIPP 2D uncropped 128 × 128 w/SIPP <0.001

2D uncropped 256 × 256 w/SIPP 3D uncropped 128 × 128 w/SIPP <0.001

2D uncropped 128 × 128 w/SIPP 3D uncropped 128 × 128 w/SIPP 0.001

SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.

Table 5. Mean Dice similarity coefficients and corresponding 95% confidence intervals 
are reported for each model configuration, comparing results with and without 
superimposition post-processing. Statistically significant differences, identified by non-
overlapping confidence intervals, are indicated in bold

Model Original mean (95% CI) SIPP mean (95% CI)

2D uncropped 128 × 128 0.042 [0.0264, 0.0575] 0.019 [0.0133, 0.0248]

2D cropped 128 × 128 0.798 [0.7720, 0.8232] 0.190 [0.1839, 0.1959]

2D uncropped 256 × 256 0.069 [0.0493, 0.0893] 0.065 [0.0533, 0.0757]

2D cropped 256 × 256 0.797 [0.7708, 0.8223] 0.278 [0.2703, 0.2858]

3D uncropped 128 × 128 0.054 [0.0381, 0.0694] 0.064 [0.0479, 0.0795]

3D cropped 128 × 128 0.334 [0.2955, 0.3731] 0.281 [0.2523, 0.3104]

CI, confidence interval; SIPP, superimposition post-processing.
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all metrics, the 2D ResUNet++ outperformed 
its 3D counterpart. Higher IoU indicates su-
perior segmentation, and although 3D Re-
sUNet++ had a lower IoU, its performance 
improved following the application of the 
SIPP technique. SIPP accumulates bleed-
ing-positive pixels across sequential frames, 
enhancing temporal consistency. Originally 
applied to 3D ResUNet++ to address inter-
mittent bleeding visibility, SIPP also im-
proved segmentation performance for 2D 
ResUNet++ models. However, quantitative 
analysis revealed that SIPP increased FP rates, 
as errors persisted across frames, whereas FN 
rates remained relatively unaffected by post-
processing. The increase in FP rates resulting 
from the SIPP technique also contributed 
to a decrease in DSCs across most models. 
Since the Dice coefficient is sensitive to both 
FPs and FNs, the propagation of errors across 
sequential frames reduced overall spatial 
overlap precision, despite improvements 
in bleeding pixel continuity. This tradeoff 
highlights an important limitation of SIPP: 
although it enhances temporal consistency 
and bleed detection sensitivity, it may com-
promise segmentation specificity, as reflect-
ed in Dice score reductions.

Since transarterial embolization is per-
formed in real time under fluoroscopy, 
model inference speed is critical. Doubling 
image resolution from 128 × 128 to 256 × 
256 pixels nearly quadrupled the model run-
time. Interestingly, there was no statistically 
significant difference in runtime between 
2D ResUNet++ trained on 256 × 256 imag-
es and 3D ResUNet++ trained on 128 × 128 
images, indicating that 3D models also de-
mand substantial computational resources. 
Prior studies using graphics processing unit 
(GPU) hardware have demonstrated that 512 
× 512-pixel images can be segmented in less 
than 1 second,4 suggesting that GPU accel-
eration could greatly enhance model perfor-
mance and enable the training of higher-res-
olution 3D networks. Although training on 
a GPU would have considerably expedited 
model development, cost constraints and 
limited institutional access to dedicated GPU 
hardware necessitated CPU-based training in 
this study. For future real-time deployment, 
GPU acceleration will be critical to support 
high-throughput inference and maintain 
clinical usability.

Ground truth segmentation quality great-
ly impacts machine learning model perfor-
mance. To ensure reliable labeling, ground 
truth masks underwent rigorous validation. 
A chart review was conducted to confirm 
each bleeding episode’s anatomical site, with 

Figure 6. Results for the 2D and 3D ResUNet++ models: (a) original image tested on the 2D cropped 128 
× 128 model; (b) ground truth; (c) predicted image; (d) image tested on the 2D uncropped 256 × 256 
model; (e) corresponding ground truth; (f) predicted image; (g) image tested on the 3D cropped 128 × 128 
model; (h) ground truth; (i) predicted image. Red arrows in (a), (d), and (g) point toward the GI bleed. GI, 
gastrointestinal; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural networks.
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Figure 5. Mean Dice similarity coefficients and 95% confidence intervals for twelve different 2D and 3D 
ResUNet++ segmentation models, evaluated with and without SIPP. Bars indicate the mean DSC values, and 
error bars represent the corresponding 95% confidence intervals. Dice coefficients range from 0 (no overlap) 
to 1 (perfect overlap). SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; 
ResUNet++, residual neural networks; DSC, Dice similarity coefficients.
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ambiguities resolved in consultation with fel-
lowship-trained interventional radiologists. 
Manual image thresholding using MATLAB 
assigned white pixel values (255) to bleeding 
regions and black (0) to background areas, 
creating binary masks. Although manual seg-
mentation is labor-intensive, it remains the 
gold standard for validation, as emphasized 
by Yepes-Calderon et al.13 Potential operator 
bias was minimized by having a single indi-
vidual perform all segmentations. Data aug-
mentation techniques, including cropping 
and translation, as described by Shorten et 
al.,14 expanded the training dataset. Cropping 
enhanced effective resolution, and system-
atic translations increased the dataset size 
by 900%. Due to image series grouping for 
3D training, fewer images were available for 
the 3D models compared with the 2D mod-
els. Further research is needed to assess how 
expanded 3D datasets could impact model 
performance.

When comparing Tables 2 and 4, an appar-
ent contradiction emerges because models 
such as 2D cropped 128 × 128 with SIPP and 
2D cropped 256 × 256 with SIPP show high 
true positive rates (TPRs) and true negative 
rates (TNRs) in Table 2 yet exhibit a notable 
decrease in DSCs in Table 4. This discrepan-
cy stems from fundamental differences in 
how these metrics are calculated. TPRs and 
TNRs incorporate TNs, which dominate pix-
el-based segmentation tasks and can inflate 
performance metrics, particularly when back-
ground regions vastly outnumber bleeding 
pixels. In contrast, the Dice coefficient is a 
spatial overlap metric that does not consid-
er TNs and is highly sensitive to both FPs and 
FNs. Since the SIPP technique propagates 
predictions across frames, it can increase FPs 
and lead to reduced Dice scores despite sta-
ble or improved TPRs and TNRs. This tradeoff 
underscores a central tension in medical 
image segmentation: balancing sensitivity 
and temporal consistency with spatial spec-
ificity. Given the model’s intended role as an 
assistive tool during real-time embolization, 
the slight increase in FPs introduced by SIPP 
may be clinically acceptable if it ensures that 
critical bleeding regions are not missed. Both 
methods were incorporated in this study for 
transparency. 

In Table 6, some models display a TNR of 
1.0 while still reporting a nonzero FPR. This 
discrepancy stems from differences in de-
nominator definitions: TPs and TNs were cal-
culated relative to the number of positive and 
negative pixels in the ground truth, whereas 
FPs and FNs were normalized over the total 
number of pixels in the image. As a result, 

even a small number of FPPs yields a measur-
able FPR despite a perfect TNR. This normal-
ization strategy was chosen to consistently 
reflect prediction error impacts across imag-
es of varying sizes and class balances.

Recent studies have further demonstrated 
the potential of machine learning for DSA-
based bleeding detection. Barash et al.15 uti-
lized a CNN to classify DSA images as either 
normal or containing active bleeding, achiev-
ing an area under the curve of 85.0% and 
an accuracy of 77.43%. Similarly, Liu et al.16 
introduced a method using parametric color 
imaging to enhance DSA sequences and bet-
ter localize bleeding points. Additionally, Min 

et al.17 developed a two-stage deep learning 
model, “InterNet,” to detect active abdominal 
arterial bleeding on emergency DSA images. 
Their model considerably improved workflow 
efficiency, reducing radiologist interpretation 
time from 84.88 to 43.78 seconds. This high-
lights the potential of artificial intelligence 
tools to expedite bleeding detection during 
high-stakes procedures. Compared with 
these classification-based approaches, the 
present study focuses on semantic segmen-
tation to directly identify and localize bleed-
ing regions at the pixel level. Furthermore, 
our study introduces the SIPP technique to 
enhance temporal consistency.

Table 6. The true positive, true negative, false positive, and false negative rates were 
tabulated for the 12 different cases in the qualitative results

True positive 
rate

True negative 
rate

False positive 
rate

False negative 
rate

2D uncropped 128 × 128 0.122 1 0.402 0.285

2D cropped 128 × 128 0.969 1 0.003 0.023

2D uncropped 256 × 256 0.22 1 0.338 0.292

2D cropped 256 × 256 0.953 1 0 0.038

3D uncropped 128 × 128 0.163 1 0.149 0.311

3D cropped 128 × 128 0.597 1 0.014 0.182

2D uncropped 128 × 128 w/SIPP 0.408 1 0.325 0

2D cropped 128 × 128 w/SIPP 0.997 1 0.002 0

2D uncropped 256 × 256 w/SIPP 0.571 1 0.244 0

2D cropped 256 × 256 w/SIPP 0.999 1 0 0

3D uncropped 128 × 128 w/SIPP 0.276 1 0.234 0.179

3D cropped 128 × 128 w/SIPP 0.853 1 0.018 0.054

SIPP, superimposition post-processing.

Figure 7. Bar graph showing differences in the qualitative accuracy of segmentation results for the 12 
testing scenarios. The “control” represents cases without post-processing, whereas the other cases used 
the SIPP technique. SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; 
ResUNet++, residual neural networks.
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Limitations

Several limitations must be acknowl-
edged. First, the sample size was relatively 
small (26 patients), limiting statistical pow-
er and generalizability. Second, no external 
validation set from a separate institution was 
used, raising concerns about model robust-
ness across different imaging protocols and 
vendors. Third, training was performed on a 
CPU rather than a GPU, which constrained 
image resolution, limited model complexity, 
slowed inference speeds, and necessitated 
manual cropping of bleeding regions to pre-
serve resolution for training. Although neces-
sary under computational constraints, manu-
al cropping introduces potential bias and is 
not feasible for clinical deployment. In future 
work, GPU-accelerated training and infer-
ence will be pursued to allow the processing 
of entire uncropped DSA images at full res-
olution. Alternatively, a sliding window ap-
proach could be implemented, whereby the 
model systematically analyzes overlapping 
regions of the full image to detect bleeding 
without manual preselection. Fourth, the 
dataset included only bleeding-positive cas-
es, limiting the ability to fully assess FPRs and 
overall specificity. Future studies can address 
these limitations by expanding datasets, in-
corporating external validation cohorts, uti-
lizing GPU acceleration, and including nega-
tive control cases to better assess real-world 
model performance.

In conclusion, this study investigated the 
use of 2D ResUNet++ and 3D ResUNet++ 
neural network models to segment GI bleed-
ing in DSA prior to transarterial embolization. 
Most notably, the 2D ResUNet++ outper-
formed the 3D ResUNet++ model. In qual-
itative analysis, the 2D ResUNet++ model 
achieved the highest accuracy, ranging from 
95% to 97%, when enhanced with the SIPP 
technique. The highest DSC observed was 

80% for the same model. Both quantitative 
and qualitative analyses highlight the po-
tential feasibility of this model for real-time 
bleeding segmentation in the interventional 
radiology suite. Furthermore, training and 
testing with more 3D data are recommended 
to further refine the performance of the 3D 
ResUNet++ model. Incorporating GPU accel-
eration is also advised for faster processing. 
Future studies should evaluate the impact of 
these tools on DSA images in real time.
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