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Dear Editor,

I read with great interest the article titled “Evaluating text and visual diagnostic capabilities 
of large language models on questions related to the Breast Imaging Reporting and Data 
System Atlas 5th edition” published in Diagnostic and Interventional Radiology.1 The study ex-
plores how large language models (LLMs) respond to multiple-choice and some image-based 
questions based on the Breast Imaging Reporting and Data System (BI-RADS) 5th edition and 
presents the impressive results achieved by these models. Research of this kind is crucial to 
understanding the growing potential role of artificial intelligence technologies, particular-
ly LLMs, in radiology decision-making processes. As a contribution to the valuable findings 
of this study, I believe that considering the retrieval-augmented generation (RAG) approach 
could be beneficial for more effectively combining information retrieval and text generation 
in such scenarios.

Retrieval-augmented generation enables language models to address existing knowledge 
gaps by accessing external information sources, allowing them to generate more accurate, 
up-to-date, and contextually appropriate text.2 It consists of two main components: retriev-
al and generation. In the retrieval phase, queries are converted into vector format (e.g., us-
ing OpenAI embeddings) to create text embeddings. These vectors are then compared with 
pre-indexed documents using similarity search algorithms to retrieve the most relevant con-
tent (top-k retrieval). In the generation phase, the retrieved information is added to the input 
of the LLM, which then generates text based on this context.3,4 This method holds strong po-
tential, especially in fields that require complex information processing, such as radiology and 
detailed analyses based on BI-RADS.

In a study highlighting the effectiveness of this method in radiology, Tozuka et al.5 per-
formed tumor, node, metastasis staging of lung cancer using LLMs with and without RAG. In 
this study, Google’s NotebookLM, a system incorporating RAG, achieved the highest perfor-
mance in lung cancer staging. GPT-4o was also tested with and without RAG, and the use of 
RAG resulted in more successful outcomes across all stages of staging.5 Given the limitations 
of current static models–such as knowledge gaps and the risk of generating misleading con-
tent (hallucinations)–RAG offers a promising approach to mitigate these issues and provide a 
more practical solution in both radiology education and clinical practice.

I would like to express my gratitude once again for your study’s contribution to the field. 
I believe that incorporating RAG in future research, particularly in studies evaluating the 
knowledge level of LLMs on radiology guidelines, as in this case, could further enhance mod-
el accuracy and reliability. 
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