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PURPOSE
 

To evaluate the diagnostic performance of delayed post-gadolinium enhancement magnetic res-
onance imaging (DEMRI) in diagnosing Menière’s disease (MD) and to establish an effective MRI-
based diagnostic model.

METHODS
 

This retrospective multicenter study assessed DEMRI descriptors in patients presenting with 
Ménièriform symptoms who were examined consecutively between May 2022 and May 2024. A 
total of 162 ears (95 with MD, 67 controls) were included. Each ear was randomly assigned to either 
a training set (n = 98) or a validation set (n = 64). In the training cohort, diagnostic models for MD 
were developed using logistic regression. The area under the curve (AUC) was used to evaluate 
the diagnostic performance of the different models. The Delong test was applied to compare AUC 
estimates between models. 

RESULTS
 

The proposed DEMRI diagnostic model demonstrated strong diagnostic performance in both the 
training cohort (AUC: 0.907) and the validation cohort (AUC: 0.887), outperforming the clinical diag-
nostic model (P = 0.01231; 95% confidence interval: 0.033–0.269) in the validation cohort. The AUC 
of the DEMRI model was also higher than that of the combined DEMRI-clinical model (AUC: 0.796), 
although the difference was not statistically significant (P = 0.054). In the training set, the sensitivity 
and specificity of the DEMRI model were 78.9% and 88.5%, respectively.

CONCLUSION
A diagnostic model based on DEMRI features for MD is more effective than one based solely on 
clinical variables. DEMRI should, therefore, be recommended when MD is suspected, given its sig-
nificant diagnostic potential.

CLINICAL SIGNIFICANCE
This model may improve the accuracy and timeliness of MD diagnosis, as it is less influenced by the 
attending physician’s level of inquiry or the patient’s self-reporting ability. It may also contribute to 
more effective disease management in patients with MD.
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Menière’s disease (MD) is a multifactorial condition in which the combined effect of 
genetic and environmental factors may determine its onset.1 The main clinical symp-
toms include idiopathic fluctuating sensorineural hearing loss (SNHL), spontaneous 

vertigo, aural fullness, and tinnitus. Prosper Ménière first described the disease in 1861, pro-
posing that the pathological site was in the labyrinth rather than the brain.2,3 However, di-
agnosis has been challenging, especially when the initial symptoms are subtle, resulting in 
limited studies on the epidemiology of MD. The American Academy of Otolaryngology–Head 
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and Neck Surgery developed guidelines for 
the diagnosis and therapeutic evaluation of 
MD in 1972, which were revised in 1985 and 
1995.4 In 2015, the Barany Society updated 
and established consensus diagnostic crite-
ria for MD, partly to distinguish migraine-re-
lated vertigo from MD.5,6 However, these 
updated criteria still relied on patient self-re-
ports rather than objective medical tests. In 
addition, an insufficient understanding of 
MD in some clinical departments has led to 
delayed diagnosis and treatment.

In 1937, British and Japanese research-
ers discovered endolymphatic hydrops (EH) 
in the human temporal bone and provid-
ed a pathological description of Menière’s 
syndrome.7,8 In 2007, Nakashima et al.9 suc-
cessfully demonstrated EH in a patient with 
MD using delayed inner ear imaging with a 
three-dimensional fluid-attenuated inver-
sion recovery (3D-FLAIR) sequence after 
intratympanic gadolinium injection. Since 
then, a series of magnetic resonance imag-
ing (MRI) studies on EH have emerged.8,10-14 
3D-FLAIR and three-dimensional inversion 
recovery with real reconstruction (3D-real 
IR) are the most commonly used imaging se-
quences for EH.11 With these newer imaging 
techniques, EH can be visualized in vivo and 
used to support diagnosis. In addition to EH, 
several other signs1-20 can also be observed 
on MRI. As a non-invasive tool, the diagnos-
tic performance of delayed post-gadolinium 
enhancement MRI (DEMRI) remains to be ful-
ly clarified.

The aim of this study is to establish an 
intuitive and objective diagnostic model for 
MD, providing an effective diagnostic path-
way for patients, improving the efficiency 
and accuracy of diagnosis, and offering a ref-
erence for clinical treatment planning.

Methods

Patients

This multicenter retrospective study fol-
lowed the principles outlined in the Decla-
ration of Helsinki, including all amendments 
and revisions. The research was approved 
by the Medical Ethics Committee of the Sec-
ond Affiliated Hospital of Zhejiang Universi-
ty School of Medicine IRB-2024-0048 (date: 
13.05.2024). Informed written consent was 
obtained from all participants after an ex-
planation of the nature of the study, as ap-
proved by the same ethics committee.

This retrospective study included data 
from consecutive patients who first visited 
the otology departments of three medical 
centers with Menièriform symptoms such as 
vertigo, hearing loss, tinnitus, and aural full-
ness and who underwent DEMRI of the inner 
ear labyrinth between May 2022 and May 
2024. A total of 136 patients (272 ears) were 
retrospectively analyzed. Ultimately, 85 pa-
tients (162 ears: 95 MD ears, 67 control ears; 
mean age: 55.2 ± 13.6 years) were enrolled 
in the study based on the exclusion criteria 
(Figure 1). Each ear was treated as a single 
unit and randomly assigned to either a train-
ing set (n = 98 ears) or a validation set (n = 64 
ears) in a 6:4 ratio (Figure 1).

Baseline clinical data, including sex, age, 
affected side, inner ear symptoms (vertigo, 
hearing loss, tinnitus, aural fullness), and 
pure tone audiometry (PTA), were extract-
ed from the medical record management 

system. Given variations in clinical inquiry, 
symptoms such as vertigo, hearing loss, tin-
nitus, and aural fullness were recorded as 
either “yes” or “no,” excluding frequency and 
duration as specified in the diagnostic cri-
teria for MD. Based on the average hearing 
threshold from PTA at 0.5 kHz, 1 kHz, and 
2 kHz, hearing loss was classified into four 
stages: stage I = average hearing threshold 
≤ 25 dB HL; stage II ≥ 25–40 dB HL; stage III ≥ 
40–70 dB HL; and stage IV = average hearing 
threshold > 70 dB HL.

Magnetic resonance imaging examinations

Patients underwent DEMRI using 3T scan-
ners at the participating centers (Center A: 
uMR 790, UIH, Shanghai, China; Ceners B and 
C: Ingenia CX, Philips Healthcare, Nether-
lands) with a standard 32-channel head and 
neck coil. Prior to gadolinium administration, 
a 3D-T2-sampling perfection with applica-
tion-optimized contrasts using different flip 
angle evolutions (3D-T2-SPACE) sequence 
was performed with the following parame-
ters: repetition time (TR): 1300 ms; echo time 
(TE): 196.68 ms; slice thickness: 0.5 mm; ma-
trix size: 380 × 100; field of view (FOV): 220 
× 180 mm; acceleration factor: 2 (2D); scan 
time: 1 min 47 s. This scan was used to ex-
clude patients with organic brain syndromes, 
inner ear malformations, or acoustic neuro-
ma.

A 3D-FLAIR sequence was performed 4 
hours after administration of a double dose 
of intravenous gadobutrol (7.5 mL/vial, 1.0 
mmol/mL; Bayer AG) to ensure maximum 

Main points

•	 Delayed post-gadolinium enhancement 
magnetic resonance imaging (DEMRI) of the 
inner ear enables visualization of endolym-
phatic hydrops and perilymphatic spaces in 
patients with Menière’s disease (MD), which 
is critical for diagnosis.

•	 In the DEMRI-based diagnostic model, the 
most substantial features were “Cochlea_
EH_Grad,” “Cochlea_Apex_EH_Score,” “VA,” 
and “Vestibule_EH.”

•	 The diagnostic performance of DEMRI for 
MD is superior to that of clinical information 
alone.

Figure 1. Flowchart of the patient recruitment pathway. MRI, magnetic resonance imaging.
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perilymphatic enhancement (PLE). Imaging 
parameters were: FOV: 220 × 190 mm; sec-
tion thickness: 0.7 mm; TR: 6500 ms; TE: 426 
ms; number of excitations = 1; inversion time 
= 1935 ms; flip angle = 54°; matrix: 256 × 
100; bandwidth: 500 Hz/pixel; turbo factor: 
5 (acs); voxel size: 0.86 × 0.86 × 1 mm; scan 
time: 2 min 56 s. Previous studies21,22 have 
shown that gadobutrol offers advantages 
over other macrocyclic gadolinium contrast 
agents in MRI for diagnosing MD due to its 
higher concentration and greater relaxivity.

Extraction of qualitative and quantitative 
magnetic resonance imaging features

The MR images were qualitatively ana-
lyzed by three experienced radiologists (with 
15, 15, and 20 years of experience in head 
and neck imaging diagnosis, respectively), 
all blinded to the clinical findings and symp-
toms.

The degree of EH was indicated by a 
widening of the negative signal gap within 
the labyrinth. In this study, the cochlea and 
vestibule were dichotomized as EH-positive 
or EH-negative based on the presence or 
absence of hydrops. Cochlear and vestibular 
EH grades were evaluated using the visual 
four-grade method proposed by Gürkov and 
Bernaerts.23,24

Cochlea 

• Normal (grade 0): The scala media (SM) 
appeared as a vaguely visible dark area with 
a relatively straight border separating it from 
the scala vestibuli and scala tympani (Figure 
2a).

• Mild hydrops (grade 1): The SM exhibited 
a distinct hypointense area surrounded by a 
clear and continuous hyperintense perilym-
phatic ring (Figure 2b).

• Moderate hydrops (grade 2): The hyper-
intense perilymphatic ring was substantially 
interrupted (Figure 2c).

• Severe hydrops (grade 3): The surround-
ing hyperintense perilymphatic area became 
a clear, straight line (Figure 2d). 

Vestibule 

• Normal (grade 0): The saccule and utricle 
were separated, and their combined area oc-
cupied less than half of the vestibular space 
(Figure 3a).

• Mild hydrops (grade 1): The saccule was 
equal to or larger than the utricle, and the 
two could still be distinguished (Figure 3b).

• Moderate hydrops (grade 2): The saccule 
and utricle were fused, but peripheral peri-
lymph remained visible (Figure 3c).

• Severe hydrops (grade 3): No PLE was 
observed in the vestibule (Figure 3d). 

In addition, a new weighted visual scoring 
system based on the Inner Ear Structural As-
signment Method25,26 was employed (Table 
1). The signal intensity ratio of PLE to the ipsi-
lateral middle cerebellar peduncle was mea-
sured. The semicircular canals and vestibular 
aqueduct (VA) were graded as 0, 1, or 2, de-
pending on whether they were continuously 
developed. In total, six clinical variables and 
17 MRI features were included in the analysis 
(Supplementary Table 1).

Statistical analysis

To analyze all data, IBM SPSS (version 
27.0) and R software (version 4.2.1) were 
used. Continuous variables were presented 
as mean ± standard deviation or median 
with interquartile range. Measurement data 
conforming to a normal distribution were 
compared using the independent sample 
t-test. The Mann–Whitney U test was used 
to compare measurement data that did not 
conform to a normal distribution. Categorical 
data were compared using the χ2 test or Fish-
er’s exact test. Kendall’s W test was used to 
assess inter-observer agreement. 

Multivariable logistic regression analysis 
was applied to select MD-related features. 
Variables with P < 0.05 were included in the 

Figure 2. Grading of cochlear hydrops on axial 3D-FLAIR delayed-enhancement images. Grade 0 (normal): 
The scala media (SM) appears as a faint dark area (arrow) with a relatively straight border between the scala 
vestibuli and scala tympani (a). Grade 1 (mild hydrops): The SM shows a distinct nodular low signal area 
(white arrow), surrounded by a clear, continuous high-signal perilymphatic ring (b). Grade 2 (moderate 
hydrops): The high-signal perilymphatic ring is substantially interrupted (left arrow) (c). Grade 3 (severe 
hydrops): The surrounding high-signal perilymphatic area appears as a thin, straight line (left arrow) (d). 
3D-FLAIR, three-dimensional fluid-attenuated inversion recovery.

Figure 3. Grading of vestibular hydrops on axial 3D-FLAIR delayed-enhancement images. Grade 0 (normal): 
The saccule (short arrow) and utricle (long arrow) remain separated; the combined area is less than half of 
the vestibule (a). Grade 1 (mild hydrops): The saccule is equal to or larger than the utricle (arrow), but the 
two structures remain distinct (b). Grade 2 (moderate hydrops): The saccule and utricle are fused; peripheral 
perilymph remains visible (swallow-tail arrow, (c). Grade 3 (severe hydrops): Complete loss of perilymphatic 
enhancement in the vestibule (swallow-tail arrow, (d). 3D-FLAIR, three-dimensional fluid-attenuated 
inversion recovery.
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multivariate logistic regression model using 
the backward stepwise method to develop 
three models for MD diagnosis in the training 
cohort: DEMRI signature, clinical variables, 
and combined DEMRI-clinical parameters. 
The validation set was used to validate these 
models. The area under the curve (AUC) of 
the receiver operating characteristic (ROC) 
curve was used to evaluate the diagnostic 
performance of the different models. The De-
Long test was used to compare the AUC val-
ues between the models. A two-tailed P val-
ue less than 0.05 was considered statistically 
significant. The equation of the multivariate 
logistic regression model was as follows:

Results

Patient characteristics

A total of 85 patients (162 ears; mean 
age: 53.2 ± 13.6 years; age range: 17–86 
years) were included. The detailed clinical 
and DEMRI characteristics of all ears in the 

MD group (n = 95) and the control group (n 
= 67) are presented in Supplementary Table 
1. Except for sex, body mass index, and VA 
visualization degree, all other observed indi-
cators differed significantly between the MD 
and control groups (P < 0.05). The detailed 
characteristics of ears in the training set (n = 
98) and validation set (n = 64) are shown in 
Supplementary Table 2.

Diagnostic model development and valida-
tion

In the training set, 17 DEMRI-indepen-
dent descriptors were analyzed using mul-
tivariate logistic regression with backward 
stepwise selection. Four descriptors with P 
< 0.05 (Table 2) were selected to construct 
the DEMRI diagnostic model, which showed 
strong diagnostic performance for MD, with 
an AUC of 0.907 [95% confidence interval 
(CI): 0.848–0.966] in the training cohort and 
0.887 (95% CI: 0.802–0.971) in the validation 
cohort (Figures 4a, 4b). The same approach 
was used to build a clinical diagnostic model 
based on two independent descriptors (PTA 

stage, P < 0.001; tinnitus fullness, P < 0.001). 
The AUCs of the clinical model in the train-
ing and validation cohorts were 0.915 (95% 
CI: 0.860–0.970) and 0.736 (95% CI: 0.617–
0.855), respectively (Figures 4a, 4b).

Using multivariable logistic regression, 
four independent descriptors–Cochlea_EH_
Grade, Vestibule_EH, PTA Stage, and Tinnitus 
fullness–were identified for the combined 
DEMRI-clinical model (Table 3). The AUCs of 
the DEMRI-clinical model for diagnosing MD 
were 0.947 (95% CI: 0.903–0.990) in the train-
ing cohort and 0.796 (95% CI: 0.689–0.902) 
in the validation cohort (Figures 4a, 4b). De-
Long’s test was used to compare the correlat-
ed ROC curves. In the training set, the AUC of 
the DEMRI model was nearly equal to that of 
the clinical model. However, in the validation 
cohort, the DEMRI model had a significantly 
higher AUC (P = 0.012; 95% CI: 0.033–0.269). 
The DEMRI-clinical model also outperformed 
the clinical model in diagnosing MD (P = 
0.027). Although the DEMRI model had a 
slightly higher AUC than the DEMRI-clinical 
model, the difference was not statistically 
significant (P = 0.054) (Table 4).

The weights of the four independent risk 
factors used in the DEMRI model are illustrat-
ed in a nomogram (Figure 5a). The calibra-
tion curves of the DEMRI nomogram demon-
strated good agreement in both the training 
and validation sets (Figures 5b, 5c). 

Inter-observer agreement on the four mag-
netic resonance imaging features of the de-
layed post-gadolinium enhancement mag-
netic resonance imaging model

Inter-observer agreement for the four MRI 
features included in the DEMRI model was 
assessed using Kendall’s W test. The features 
“Cochlea_EH_Grade,” “Cochlea_Apex_EH_

Table 1. A new weighted visual scoring criteria based on the Inner Ear Structural Assignment 
Method for inner ear 3D-FLAIR images

Appearance Cochlea Vestibule Semicircular canals

Base Middle Apex Superior Horizontal Posterior

Not visible# 0 0 0 0 0 0 0

Partially visible* 2 1 -a 3b 1 1 1

Completely visible! 3 2 1 6c 2 2 2

Data represent scores awarded based on 3D-FLAIR images. #Indicates the absence of a high-signal contrast medium. 
*Refers to failure to show a high-signal image of the entire cochlear canal, a high-signal image limited to the 
tympanic or vestibular scala, interrupted high-signal images of the semicircular canals, or an incomplete high-signal 
image of the vestibule. !Denotes that all labyrinth structures are completely visible. aThis option is not applicable, 
as the apex of the cochlea is very small; only a score of 0 or 1 is assigned. If visible, a score of 1 is given without 
distinguishing between partial and complete visibility. bThe hypointensity zone in the vestibule extends below 
the lower margin of the horizontal semicircular canal and is scored as 3. cThe hypointensity zone in the vestibule is 
located entirely above the plane of the horizontal semicircular canal and is scored as 6. 3D-FLAIR, three-dimensional 
fluid-attenuated inversion recovery.

Table 2. Risk factors of DEMRI for MD in the training cohort

Variable B Wald SE P OR (95% CI)

(Intercept) 30,073 0 2955.414 0.992 1.15E+13 (0–NA)

Cochlea_EH_Grad 3.19 10,347 0.992 0.001* 24,292 (5,058–297.868)

Cochlea_Apex_EH_Score 3,698 4,298 1,784 0.038* 40,384 (1,906–3014.737)

Vestibule_EH_Score 0.631	 1,915 0.456 0.166 1,879 (0.852–5,211)

Horizontal semicircular canal -21,236 0 1477.708 0.989 0 (NA–1.91E+27)

VA 1,116 4,579 0.522 0.032* 3,053 (1,196+9.632)

Vestibule_EH 3,729 6,663 1,445 0.010* 41,631 (3.44–1172.845)

PE/MCPE 1,612 2,332 1,056 0.127 5,014 (0.607–46,332)

*Statistically significant (P < 0.05). Data show multivariable regression results.
Cochlea_EH_Grad, Endolymphatic hydrops (EH) severity in the cochlea (0–3 grade); Cochlea_Apex_EH_Score, EH in the cochlear apex (scored per Table 1); Vestibule_EH_Score, EH 
in the vestibule (scored per Table 1); Horizontal Semicircular Canal, Development (0 = absent, 1 = partial, 2 = complete); Vestibule_EH, Presence/absence of vestibular EH (binary); 
VA, Vestibular aqueduct development (0 = absent, 1 = partial, 2 = complete); PE/MCPE, Perilymph-to-middle cerebellar peduncle signal intensity ratio; SE, standard error; OR, odds 
ratio; CI, confidence interval; DEMRI, delayed post-gadolinium enhancement magnetic resonance imaging; MD, Menière’s disease.
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Score,” “Vestibule_EH,” and “VA” all demon-
strated very good consistency, with Kendall’s 
coefficients of W = 0.954, 0.985, 0.967, and 
0.951, respectively. All associated P values 
were less than 0.001 (Supplementary Table 3).

Discussion
In this study, we developed and validated 

three models to diagnose MD. The results 
showed that both the DEMRI model and the 
combined DEMRI-clinical model had better 

clinical diagnostic performance than the 
clinical model alone (AUC: 0.736; sensitivity: 
55.3%; specificity: 92.3%). The DEMRI model 
demonstrated excellent predictive perfor-
mance in the validation set (AUC: 0.887; sen-
sitivity: 78.9%; specificity: 88.5%). Although 
the AUC value of the combined DEMRI-clin-
ical model was slightly lower than that of 
the DEMRI model, there was no significant 
difference in diagnostic performance. In the 
DEMRI model, the most substantial features 

were “Cochlea_EH_Grad,” “Cochlea_Apex_
EH_Score,” “VA,” and “Vestibule_EH.”

MD is associated with a variety of comor-
bidities, such as migraine, anxiety, allergies, 
and immune disorders, but its pathogenesis 
remains unknown.27 EH, characterized by an 
increase in endolymphatic fluid within the 
membranous labyrinth of the inner ear, has 
been identified as the histopathological hall-
mark of MD. EH is thought to result from dis-
rupted endolymph homeostasis caused by 
increased production, impaired absorption, 
or both.28 In EH, excess endolymph volume 
leads to longitudinal flow from the cochlea 
to the endolymphatic sac (ES) to restore bal-
ance. Gibson29 proposed that when the ES 
and endolymphatic duct (ED) are functional, 
they can remove excess endolymph. Howev-
er, in patients with MD and dysfunctional ES 
and ED, endolymph may accumulate in the 
sinus of the ED, leading to substantial over-
flow. Various methods have been proposed 
to assess the endolymphatic space both 
qualitatively and quantitatively.23,24,26 Studies 
have shown that the relationship between 
MD and EH is strong enough to consider EH 
a hallmark of MD and a sensitive target for 
diagnostic detection.12

In this study, significant differences were 
found in all MRI features related to EH be-
tween the MD and control groups (Supple-
mentary Table 1). Amwwong these, three 
EH-related MRI features–“Cochlea_EH_Grad,” 
“Cochlea_Apex_EH_Score,” and “Vestibule_
EH”–were included in the DEMRI model. It ap-
pears that cochlea-related EH carries greater 
diagnostic weight in MD and that the pres-
ence or absence of hydrops in the cochlear 
apical turn is of particular diagnostic value.

It has been shown that cochlear hydrops 
follows a reliable pattern of hydropic pro-

Figure 4. Receiver operating characteristic (ROC) curves. Performance of the three models in both the 
training and validation cohorts. AUC, area under the curve; MR, magnetic resonance.

Table 4. Diagnostic performance of the three models in the training and validation cohorts

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy

DEMRI

Training cohort
Validation cohort

0.907(0.848–0.966) 0.825 0.927 0.940 0.792 0.867

0.887(0.802–0.971) 0.789 0.885 0.909 0.742 0.828

Clinical

Training cohort 0.915(0.860–0.970) 0.772 0.951 0.957 0.75 0.847

Validation cohort 0.736(0.617–0.855) 0.553 0.923 0.913 0.585 0.703

DEMRI-clinical

Training cohort
Validation cohort

0.947(0.903–0.990) 0.877 0.927 0.943 0.844 0.898

0.796(0.689–0.902) 0.658 0.885 0.893 0.639 0.750

AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
Model Features:
DEMRI model: Cochlea_EH_Grad, Cochlea_Apex_EH_Score, VA, Vestibule_EH
Clinical model: PTA Stage, Tinnitus fullness
DEMRI-clinical model: Cochlea_EH_Grad, Vestibule_EH, PTA Stage, Tinnitus fullness.

Table 3. Risk factors of the DEMRI-clinical model for Menière’s disease in the training cohort

Variable B Wald SE P OR (95% CI)

(Intercept) −2.711 5.258 1.182 0.022 0.066 (0.005–0.531)

Cochlea_EH_Grad 1.252 6.755 0.482 0.009* 3.4989 (1.449–10.256)

Vestibule_EH 1.377 2.996 0.796 0.083* 3.964 (0.845–20.353)

PTA Stage 1.581 5.911 0.65 0.015* 4.861 (1.603–20.68)

Tinnitus fullness −1.821 5.988 0.744 0.014* 0.162 (0.034–0.673)

*Statistically significant (P < 0.05).Multivariable regression results show:
Cochlea_EH_Grad: Cochlear endolymphatic hydrops severity grade (0–3)
Vestibule_EH: Presence or absence of vestibular endolymphatic hydrops (binary)
PTA Stage: Hearing loss classification based on pure tone audiometry (0.5 kHz, 1 kHz, 2 kHz).
SE, standard error; OR, odds ratio; CI, confidence interval; DEMRI, delayed post-gadolinium enhancement magnetic 
resonance imaging.
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gression over time, typically originating in 
the apex and proceeding toward the base, 
tonotopically resembling the progression of 
hearing loss.12,30,31 A hydrodynamic pressure 
shunt in the pars superior stimulates the utri-
cle and the saccule of the vestibule, resulting 
in “Vestibule_EH”.28,29 This longitudinal hy-
drops process may explain why the presence 
or absence of EH in the apical turn of the 
cochlea is diagnostically substantial for MD. 
Additionally, experimental studies have sug-
gested that cytochemical and ultrastructural 
disruption of the hair cells, afferent neurons, 
and fibrocytes of the lateral cochlear wall are 
involved in the pathogenesis of EH and occur 
prior to its development.10,32,33 These findings 
support the conclusion that “Cochlea_EH_
Grad” and “Vestibule_EH” are important risk 
factors for diagnosing MD. It is important to 
consider both the grade of EH in the cochlea 
and the presence or absence of EH in the ves-
tibule. The more severe the cochlear EH, the 
higher the likelihood of diagnosing MD when 
accompanied by vestibular EH, regardless of 
the severity of the vestibular component.

However, EH is not pathognomonic for 
MD, as it has also been observed in vestibu-
lar migraine (VM), isolated SNHL, and even in 
healthy individuals. This limits its diagnostic 
specificity for MD.5,34 VM is a leading cause of 
recurrent vertigo and is often misdiagnosed 
as MD despite being 5–10 times more prev-
alent.35 The clinical overlap between MD and 
VM presents substantial diagnostic challeng-
es. Emerging evidence suggests that differ-
ences in EH patterns may help distinguish 
the two conditions: MD typically presents 
with both cochlear and vestibular EH (as seen 
on Gd-enhanced MRI), whereas EH in VM is 
rare and usually limited to the cochlea.35-37 
Thus, inner ear imaging (e.g., Gd-DEMRI) may 
assist in differential diagnosis. Isolated SNHL 

may represent a prodromal phase of MD and 
warrants further investigation.

Furthermore, this study identified a rel-
atively novel finding: the VA appears to be 
a substantial risk factor in diagnosing MD. A 
study by Steve Connor et al.15 demonstrat-
ed that all VA descriptors showed excellent 
reliability for MD diagnosis and that incom-
plete VA visualization adds diagnostic value. 
Mainnemarre et al.16 further suggested that 
evaluating the VA on temporal bone com-
puted tomography (CT) could predict the 
presence of EH on MRI with a high positive 
predictive value. Attyé et al.38 proposed that 
discontinuous VA may correlate with MD. A 
non-visible or partially visible VA may result 
from bony abnormalities or central fibrosis, 
leading to endolymphatic stenosis. Although 
VA performance was included in our model, 
there was no statistically significant difference 
in VA between the MD and control groups 
(Supplementary File). This may be due to the 
low detection rate of VA on MRI, highlighting 
the need for clearer imaging techniques or 
combining MRI with other modalities, such as 
CT, for more comprehensive evaluation.

Following large-scale validation, our diag-
nostic model could be incorporated into clin-
ical practice to generate structured radiology 
reports with probability scores. These reports 
could support the following: (1) risk stratifi-
cation, (2) identification of high-risk patients 
needing specialist referral, and (3) long-term 
post-treatment management.

Limitations

Limited sample size: Although this is a 
multicenter study, the sample size (85 pa-
tients, 162 ears) is relatively small, which may 
limit the generalizability of the findings. Fu-
ture studies with larger cohorts are needed 

to validate these results.

Retrospective design: The retrospective 
nature of the study introduces potential bi-
ases in patient selection and data collection. 
Additionally, some asymptomatic patients 
with early MD may have been misclassi-
fied into the control group. Future research 
should include normal participants and other 
differential diagnoses (e.g., VM, benign posi-
tional vertigo) for more robust comparisons.

Lack of external validation: Although 
internal validation was performed, external 
validation using an independent dataset 
would further strengthen the reliability of 
the model.

Imaging feature selection: This study pri-
marily relied on conventional MRI features. 
Further exploration of advanced imaging bio-
markers may improve diagnostic accuracy.

In conclusion, we developed and validat-
ed a new DEMRI model for diagnosing MD, 
which demonstrated higher diagnostic val-
ue than clinical inquiry information alone. A 
combination of a high degree of cochlear EH, 
invisible cochlear apical turn, vestibular hy-
drops, and incomplete VA visualization sug-
gests a high risk of MD. Therefore, we recom-
mend DEMRI when MD is suspected due to 
its substantial diagnostic potential. Further 
studies are needed to explore the broader 
applicability of our model and support its 
clinical implementation.
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Supplementary Table 1. Comparison of clinical variables and MRI features between 
control group and MD group

Control ears
(n = 67)

Menière’s ears
(n = 95)

P value

PTA stage

1 52 (77.6%) 27 (28.4%) <0.001

2 13 (19.4%) 21 (22.1%)

3 2 (3.0%) 31 (32.6%)

4 0 (0%) 16 (16.8%)

Vertigo

49 (73.1%) 92 (96.8%) <0.001

Tinnitus fullness

17 (25.4%) 71 (74.7%) <0.001

Age

Mean (SD) 49.9 (13.1) 55.5 (13.6) 0.009

Gender

Male/female 33/34 43/52 0.733

BMI

Mean (SD) 23.0 (2.40) 22.7 (2.70) 0.426

Cochlea_Base_EH_Grad

0 63 (94.0%) 41 (43.2%) <0.001

1 1 (1.5%) 22 (23.2%)

2 3 (4.5%) 17 (17.9%)

3 0 (0%) 15 (15.8%)

Cochlea_Middle_EH_Grad

0 63 (94.0%) 40 (42.1%) <0.001

1 2 (3.0%) 14 (14.7%)

2 2 (3.0%) 16 (16.8%)

3 0 (0%) 25 (26.3%)

Cochlea_Apex_EH_Grad

0 62 (92.5%) 35 (36.8%) <0.001

1 2 (3.0%) 16 (16.8%)

2 3 (4.5%) 19 (20.0%)

3 0 (0%) 25 (26.3%)

Cochlea_EH_Grad

0 61 (91.0%) 25 (26.3%) <0.001

1 3 (4.5%) 24 (25.3%)

2 3 (4.5%) 21 (22.1%)

3 0 (0%) 25 (26.3%)

Cochlea_Base_EH_Score

0 0 (0%) 2 (2.1%) <0.001

2 4 (6.0%) 53 (55.8%)

3 63 (94.0%) 40 (42.1%)

Cochlea_Middle_EH_Score

0 0 (0%) 12 (12.6%) <0.001

1 4 (6.0%) 45 (47.4%)

2 63 (94.0%) 38 (40.0%)

Cochlea_Apex_EH_Score

0 4 (6.0%) 34 (35.8%) <0.001

1 63 (94.0%) 61 (64.2%)

Cochlea_EH_Score
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Supplementary Table 1. Continued

Control ears
(n = 67)

Menière’s ears
(n = 95)

P value

0 0 (0%) 1 (1.1%) <0.001

2 0 (0%) 10 (10.5%)

3 1 (1.5%) 12 (12.6%)

4 4 (6.0%) 31 (32.6%)

5 1 (1.5%) 12 (12.6%)

6 61 (91.0%) 29 (30.5%)

Vestibule_EH_Score

0 0 (0%) 15 (15.8%) <0.001

3 13 (19.4%) 45 (47.4%)

4 54 (80.6%) 35 (36.8%)

Vestibule_EH_Grade

0 57 (85.1%) 30 (31.6%) <0.001

1 8 (11.9%) 19 (20.0%)

2 2 (3.0%) 17 (17.9%)

3 0 (0%) 29 (30.5%)

Semicircular canal superior

Non-visualized 0 (0%) 5 (5.3%) 0.035

Incompletely visualized 0 (0%) 4 (4.2%)

Completely visualized 67 (100%) 86 (90.5%)

Semicircular canal horizontal

Non-visualized 0 (0%) 9 (9.5%) <0.001

Incompletely visualized 0 (0%) 18 (18.9%)

Completely visualized 67 (100%) 68 (71.6%)

Semicircular canal posterior

Non-visualized 0 (0%) 5 (5.3%) 0.023

Incompletely visualized 0 (0%) 5 (5.3%)

Completely visualized 67 (100%) 85 (89.5%)

VA

Non-visualized 23 (34.3%) 41 (43.2%) 0.318

Incompletely visualized 20 (29.9%) 30 (31.6%)

Completely visualized 24 (35.8%) 24 (25.3%)

Cochlea_EH

EH-positive 60 (89.6%) 25 (26.3%) <0.001

Vestibule_EH

EH-positive 57 (85.1%) 30 (31.6%) <0.001

PLE/MCPE

Mean (SD) 1.15 (0.291) 1.33 (0.368) <0.001

Group

Training set 41 (61.2%) 57 (60.0%) 1

Validation set 26 (38.8%) 38 (40.0%)

Cochlear and vestibular endolymphatic hydrops were evaluated according to Gurkov and Bernaerts’ visual 4-grade 
method. 
Cochlear and vestibular endolymphatic hydrops scorewere evaluated according to a new weighted visual scoring 
system (Table 1) based on Inner Ear Structural Assignment Method. 
PLE/MCPE: Measurements of signal intensity were performed by drawing an oval region of interest along the edge 
of the cochlear basal turn and a circular region of interest at the left middle cerebellar peduncle to calculate the 
signal intensity ratio. 
PTA, pure tone audiometry; SD, standard deviation; BMI, body mass index; VA, vestibular aqueduct; PLE, 
perilymphatic enhancement; MCPE, middle cerebellar peduncle.
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Supplementary Table 2. Comparison of clinical variables and MRI features between 
training set and validation set

Training set 
(n = 98)

Validation set 
(n = 64)

P value

Label

Control ears 41 (41.8%) 26 (40.6%) 1

Menière’s ears 57 (58.2%) 38 (59.4%)

PTA stage

1 47 (48.0%) 32 (50.0%) 0.972

2 20 (20.4%) 14 (21.9%)

3 21 (21.4%) 12 (18.8%)

4 10 (10.2%) 6 (9.4%)

Vertigo

90 (91.8%) 51 (79.7%) 0.044

Tinnitus fullness 

41 (41.8%) 33 (51.6%) 0.292

Age

Mean (SD) 53.4 (13.0) 53.0 (14.6) 0.852

Gender

Male/female 43/55 33/31 0.425

BMI

Mean (SD) 23.0 (2.59) 22.4 (2.54) 0.165

Cochlea_Base_EH_Grad

0 61 (62.2%) 43 (67.2%) 0.757

1 14 (14.3%) 9 (14.1%)

2 12 (12.2%) 8 (12.5%)

3 11 (11.2%) 4 (6.3%)

Cochlea_Middle_EHGrad

0 60 (61.2%) 43 (67.2%) 0.75

1 9 (9.2%) 7 (10.9%)

2 12 (12.2%) 6 (9.4%)

3 17 (17.3%) 8 (12.5%)

Cochlea_Apex_EH_Grad

0 56 (57.1%) 41 (64.1%) 0.653

1 10 (10.2%) 8 (12.5%)

2 15 (15.3%) 7 (10.9%)

3 17 (17.3%) 8 (12.5%)

Cochlea_EH_Grad

0 51 (52.0%) 35 (54.7%) 0.84

1 15 (15.3%) 12 (18.8%)

2 16 (16.3%) 8 (12.5%)

3 16 (16.3%) 9 (14.1%)

Cochlea_Base_EH_Score

0 2 (2.0%) 0 (0%) 0.498

2 35 (35.7%) 22 (34.4%)

3 61 (62.2%) 42 (65.6%)

Cochlea_Middle_EH_Score

0 10 (10.2%) 2 (3.1%) 0.235

1 28 (28.6%) 21 (32.8%)

2 60 (61.2%) 41 (64.1%)

Cochlea_Apex_EH_Score
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Supplementary Table 2. Continued

Training set 
(n = 98)

Validation set 
(n = 64)

P value

0 26 (26.5%) 12 (18.8%) 0.341

1 72 (73.5%) 52 (81.3%)

Cochlea_EH_Score

0 1 (1.0%) 0 (0%) 0.427

2 8 (8.2%) 2 (3.1%)

3 8 (8.2%) 5 (7.8%)

4 21 (21.4%) 14 (21.9%)

5 5 (5.1%) 8 (12.5%)

6 55 (56.1%) 35 (54.7%)

Vestibule_EH_Score

0 11 (11.2%) 4 (6.3%) 0.562

3 34 (34.7%) 24 (37.5%)

6 53 (54.1%) 36 (56.3%)

Vestibule_EH_Grade

0 52 (53.1%) 35 (54.7%) 0.617

1 14 (14.3%) 13 (20.3%)

2 12 (12.2%) 7 (10.9%)

3 20 (20.4%) 9 (14.1%)

Semicircular canal superior

Non-visualized 4 (4.1%) 1 (1.6%) 0.61

Incompletely visualized 2 (2.0%) 2 (3.1%)

Completely visualized 92 (93.9%) 61 (95.3%)

Semicircular canal horizontal

Non-visualized 6 (6.1%) 3 (4.7%) 0.772

Incompletely visualized 12 (12.2%) 6 (9.4%)

Completely visualized 80 (81.6%) 55 (85.9%)

Semicircular canal posterior

Non-visualized 3 (3.1%) 2 (3.1%) 0.999

Incompletely visualized 3 (3.1%) 2 (3.1%)

Completely visualized 92 (93.9%) 60 (93.8%)

VA

Non-visualized 37 (37.8%) 27 (42.2%) 0.766

Incompletely visualized 30 (30.6%) 20 (31.3%)

Completely visualized 31 (31.6%) 17 (26.6%)

Cochlea_EH

EH-positive 51 (52.0%) 34 (53.1%) 1

Vestibule_EH

EH-positive 52 (53.1%) 35 (54.7%) 0.967

PE/MCPE

Mean (SD) 1.21 (0.318) 1.32 (0.386) 0.065

PTA, pure tone audiometry; SD, standard deviation; BMI, body mass index; VA, vestibular aqueduct; PLE, 
perilymphatic enhancement; MCPE, middle cerebellar peduncle.
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Supplementary Table 3. Inter-observer reliability Kendall’ W values for the four DEMRI model features

Grade/score Cochlea_EH_Grade Cochlea_Apex_Score Vestibule_EH VA

0 1 2 3 0 1 Yes No 0 1 2

Observer1 84 29 26 23 38 124 75 87 66 48 48

Observer2 79 38 32 13 40 122 71 91 73 45 44

Observer3 81 32 25 24 38 124 75 87 66 57 39

Kendall’s W 0.954 0.985 0.967 0.951

P <0.001 <0.001 <0.001 <0.001

VA, vestibular aqueduct; DEMRI, delayed post-gadolinium enhancement magnetic resonance imaging.




