
A R T I F I C I A L  I N T E L L I G E N C E  A N D  I N F O R M AT I C S
O R I G I N A L  A R T I C L ECopyright© Author(s) - Available online at dirjournal.org.

Content of this journal is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

Automated detection and characterization of small cell lung cancer 
liver metastasis on computed tomography

PURPOSE
Small cell lung cancer (SCLC) is an aggressive disease with diverse phenotypes that reflect the het-
erogeneous expression of tumor-related genes. Recent studies have shown that neuroendocrine 
(NE) transcription factors may be used to classify SCLC tumors with distinct therapeutic responses. 
The liver is a common site of metastatic disease in SCLC and can drive a poor prognosis. Here, we 
present a computational approach to detect and characterize metastatic SCLC (mSCLC) liver lesions 
and their associated NE-related phenotype as a method to improve patient management.

METHODS
This study utilized computed tomography scans of patients with hepatic lesions from two data 
sources for segmentation and classification of liver disease: (1) a public dataset from patients of var-
ious cancer types (segmentation; n = 131) and (2) an institutional cohort of patients with SCLC (seg-
mentation and classification; n = 86). We developed deep learning segmentation algorithms and 
compared their performance for automatically detecting liver lesions, evaluating the results with 
and without the inclusion of the SCLC cohort. Following segmentation in the SCLC cohort, radiomic 
features were extracted from the detected lesions, and least absolute shrinkage and selection op-
erator regression was utilized to select features from a training cohort (80/20 split). Subsequently, 
we trained radiomics-based machine learning classifiers to stratify patients based on their NE tumor 
profile, defined as expression levels of a preselected gene set derived from bulk RNA sequencing or 
circulating free DNA chromatin immunoprecipitation sequencing.

RESULTS
Our liver lesion detection tool achieved lesion-based sensitivities of 66%–83% for the two datasets. 
In patients with mSCLC, the radiomics-based NE phenotype classifier distinguished patients as pos-
itive or negative for harboring NE-like liver metastasis phenotype with an area under the receiver 
operating characteristic curve of 0.73 and an F1 score of 0.88 in the testing cohort.

CONCLUSION
We demonstrate the potential of utilizing artificial intelligence (AI)-based platforms as clinical de-
cision support systems, which could help clinicians determine treatment options for patients with 
SCLC based on their associated molecular tumor profile.

CLINICAL SIGNIFICANCE
Targeted therapy requires accurate molecular characterization of disease, which imaging and AI 
may aid in determining.
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Small cell lung cancer (SCLC) is an ag-
gressive form of lung cancer strongly 
associated with smoking and accounts 

for 13%–15% of all lung cancer cases.1,2 Pa-
tients often present with advanced disease, 
resulting in a poor prognosis with a 5-year 
survival rate of 7%.3 These outcomes reflect 
the challenges in clinical management of 
a recalcitrant cancer marked by the ubiqui-
tous presence of TP53, RB1 loss-of-function 
events, and high chromosomal instability,4,5 
which drive rapid progression, widespread 
metastasis,5,6 and treatment resistance fol-
lowing initial response to therapy.7 Among 
many complications associated with cancer 
progression, SCLC typically leads to hepatic 
metastasis, which is seen in 21%–27% of pa-
tients at presentation and 69% at autopsy.8 
This makes the liver the most prevalent met-
astatic site after mediastinal lymph nodes—
an important characteristic since liver metas-
tasis is also an independent marker of poor 
prognosis.9,10 

SCLC also demonstrates a high degree 
of heterogeneity, manifesting under various 
transcriptional subtypes. The classification of 
SCLC subtypes is defined by the expression 
levels of four transcription regulators, name-
ly neuronal differentiation 1 (NEUROD1), 
achaete-scute family basic helix-loop-helix 
transcription factor 1 (ASCL1), POU class 
2 homeobox3, and yes-associated protein 
(YAP1).11 The relative expression of these reg-
ulators leads to heterogeneous neuroendo-
crine (NE) gene expression, which has ther-
apeutic implications.12,13 The SCLC tumors 
associated with relatively high NEUROD1 
and ASCL1 expression are considered NE 
positive and demonstrate greater suscepti-
bility to DNA-damaging agents;14,15 non-NE 
SCLC tumors have greater POU2F2 and YAP1 
expression and have been shown to possess 
better response to immunotherapy.13,16-18

Despite emerging insights into its molec-
ular subtypes, SCLC is still currently treated 

as a homogenous disease. As we gain more 
insights into the molecular underpinnings 
of SCLC that drive tumor response to treat-
ments, there is a need for clinical workflows 
that can stratify patients based on their tu-
mor profile. Methods that identify subpopu-
lations of patients with SCLC who are likely 
to benefit from specific targeted treatments 
without requiring additional invasive testing 
can offer physicians actionable insights, es-
pecially when treatment response status can 
be determined at the time of diagnosis. Fur-
thermore, computational platforms that can 
accurately detect and characterize tumors 
offer practical utility in supporting physicians 
from diagnosis to treatment. They can auto-
mate critical tasks, integrate different types 
of medical data (e.g., radiology scans, biopsy 
findings, blood panel information), extract 
clinically relevant tumor characteristics, and 
consolidate medical information for health 
practitioners. 

Within the past decade, artificial intelli-
gence (AI) has been integrated into automat-
ing medical image processing tasks. More 
specifically, deep learning has shown prom-
ise in segmenting objects at different imag-
ing scales, including tissue19 and cellular20 
levels, for a variety of medical conditions, 
including lung cancer21,22 and hepatic dis-
eases.23-25 Preceding the popularity of deep 
learning for medical image segmentation 

is the use of radiomics, a common research 
approach to describe tumors quantitatively, 
including their intensity, shape, and texture, 
which may be used as image-based biomark-
ers for downstream analysis and association 
studies. Radiomics has been adopted to 
address various clinical decision tasks, such 
as lesion classification26,27 and treatment re-
sponse prediction,28,29 including applications 
in liver-associated malignancies.30-32

Given the implications of transcription-
al subtypes to treatment response in SCLC 
and the association between SCLC hepatic 
metastasis and prognosis, we investigated 
whether NE status, as determined by tumor 
gene expression analysis, can be determined 
from computed tomography (CT) scans of 
confirmed SCLC metastasis in the liver. In this 
study, we present a two-step machine learn-
ing framework for automated detection and 
characterization of SCLC liver metastasis. We 
employ deep learning for three-dimension-
al (3D) segmentation of hepatic lesions fol-
lowed by radiomics-based analysis to charac-
terize and classify image scans by NE status, 
defined as high expression of a pre-selected 
gene set.

Methods
A graphical summary of the study objec-

tive is shown in Figure 1.

Main points

•	 The liver is a frequent site of metastases in 
small cell lung cancer, and artificial intelli-
gence helps identify and segment tumors.

•	 The computed tomography (CT) imaging 
characteristics of liver lesions have a mod-
erate correlation with neuroendocrine tran-
scription factors.

•	 An end-to-end machine learning pipeline 
may help characterize the molecular profile 
of liver lesions in CT.

Figure 1. Graphical summary of the machine learning framework for automated detection and 
characterization of small cell lung cancer (SCLC) liver metastases on computed tomography. (a) Three-
dimensional deep learning models were developed to simultaneously segment the liver and tumors within 
the region. (b) Radiomics-based characterization of metastatic SCLC liver tumors was performed, and 
subsequently supervised machine learning models were trained to classify patients’ neuroendocrine (NE) 
status as NE positive or NE negative. 

a

b
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Study population and data description

Two datasets were utilized in this study: 
(1) the liver tumor segmentation (LiTS) data-
set, a publicly available dataset containing 
131 CT scans; and (2) a retrospective cohort 
of patients with metastatic SCLC (mSCLC) un-
derwent CT at the National Cancer Institute 
(Bethesda, MD, USA).

The LiTS dataset consists of multi-center 
scans of primary and secondary hepatic tu-
mors. All scans were manually annotated by 
a radiologist (>3 years’ experience) using the 
ITK-SNAP open source software platform to 
obtain liver and lesion labels. Annotations 
were confirmed by three additional radiolo-
gists; the most senior reader’s findings were 
used in any labeling conflicts. This research 
study was conducted retrospectively using 
human participant data made available as 
open-access materials by Bilic et al.25 This 
open-source cohort was used for training and 
development of a segmentation algorithm 
for the detection and segmentation of focal 
liver lesions on CT. This cohort was used ex-
clusively for the segmentation task (Figure 1).

An initial query for the mSCLC dataset 
identified 88 patients diagnosed with SCLC 
and undergoing disease monitoring or treat-
ment at the institution under one or more 
clinical protocols, including the following 
ClinicalTrials.gov identifiers: NCT02769962 
(IRB 16-C-0107; 2016-05-09), NCT03554473 
(IRB 18-C-0110; 2018-09-11), NCT02487095 
(IRB 15-C-0150; 2015-07-30), NCT02484404 
(IRB 15-C-0145; 2015-06-29), NCT02146170 
(IRB 14-C-0105, 2014-05-28). Each protocol 
was approved by the local institutional re-
view board, and written informed consent 
was obtained from all patients. From these 
patients, a total of 346 abdominal CT scans 
obtained during 178 CT sessions were iden-
tified for possible inclusion. This cohort was 
used for both the segmentation and classi-
fication tasks (Figure 1). Multiple series were 
included from each study date: for example, 
thick-slice and soft tissue thin-slice recon-
structions to evaluate model robustness 
(Supplementary Table 1). Radiology reports 
were manually reviewed for each CT scan to 
confirm the presence or absence of hepatic 
lesions. From all available scans, a subset of 
82 scans was manually reviewed by an ex-
pert radiologist (>15 years’ experience), and 
liver lesions were segmented using ITK-SNAP. 
Liver organ annotations were obtained using 
a previously developed two-dimensional 
(2D) U-Net liver segmentation model33 and 
were manually adjusted using ITK-SNAP. 

All annotated scans were used for the tumor 
segmentation task (Figure 1). 

All patients in the mSCLC cohort under-
went either tissue or blood sampling for 
bulk RNA or circulating free DNA (cfDNA) 
chromatin immunoprecipitation sequenc-
ing at multiple timepoints, corresponding 
with CT study dates (± 3 months). Expression 
profiles from sequencing data were used 
to classify patients broadly into NE-positive 
and NE-negative phenotype groups based 
on previously published methods.13,34 Briefly, 
single-sample gene set enrichment analysis 
from a 50-gene signature panel was used to 
classify samples as NE (score >0) or non-NE 
(score <0), with a lower score in the non-NE 
group reflecting more confidence that the 
sample does not exhibit NE differentiation.35 
Strong correlation observed between cfD-
NA-derived and RNA-derived expression 
scores for NE phenotyping has been previ-
ously reported;13,34-36 therefore, either ref-
erence standard was used for ground truth 
assignment in this cohort. The NE phenotype 
expression scores (range: −1,1) and classifi-
cation (NE, non-NE) were recorded for use in 
this study (Table 1). 

Deep learning model development for tu-
mor segmentation

Three deep learning algorithms were se-
lected to build a hepatic lesion detection 
model: (1) a 3D U-Net, (2) a 3D SegResNet, 
and (3) a 3D nnU-Net. During initial model 
development and selection, each algorithm 
was trained solely using the LiTS dataset, and 
mSCLC data were used as an independent 
test set. For all training, data partitions were 
stratified at the patient level and are summa-
rized in Table 2.

The U-Net and SegResNet models were 
built using the Medical Open Network for AI 
platform (version 1.3.0).37 For these two net-
work architectures, training was conducted 
with the following data pre-processing and 
augmentations: CTs were resampled to uni-
form spacing (0.5 mm × 0.5 mm × 1 mm), 
foreground cropping, variable CT window-
ing, and random cropping by labels with a 
sampling ratio of 4:1:3 for the background, 
liver, and lesion, with 12 samples taken per 
image. Each sample crop was of size 512 × 
512 × 16. Both models were trained using 
an adaptive moment estimator to minimize 
lesion-level DICE loss, with a learning rate 
of 0.0001 for 1,500 epochs. The final model 
was selected based on the highest validation 
DICE reported during training. Inference was 
conducted using the sliding window tech-
nique. 

The nnU-Net model, an auto-configuring 
semantic segmentation model, was imple-
mented using the built-in 3dfullres five-fold 
cross-validation.38 Pre-processing configura-
tions selected by the model included spac-
ing (0.789 mm × 0.789 mm × 2 mm), patch 
size 80 × 80 × 60, and per-image z-score stan-
dardization.

For all three models, performance was 
evaluated in the test set using lesion-level 
DICE coefficients and tumor detection sensi-
tivity on both the LiTS and mSCLC datasets. 

Due to differences in the burden and im-
aging characteristics of the mSCLC cohort 
compared with the LiTS cohort, which may 
potentially impact generalizability, a final 
nnUNet model was trained from all LiTS train-
ing data along with a subset of mSCLC scans 
partitioned with an approximate training/test 

Table 1. Summary of key characteristics of the mSCLC dataset describing the distribution of 
patient scans, lesions, and neuroendocrine status in the cohort

mSCLC data characteristics Quantity

Age (years) 63 (23–82)

Sex: male, female 45, 41

Number of scans per patient Median: 3, range: (1–14)

Number of lesions per scan Median: 10, range: (1–148)

Hepatic lesions

   Present 252

   Absent 94

Final study cohort for classification†

Neuroendocrine classification by sequencing-based assessment†

   Positive 172

   Negative 55

†, reported for the final 227 series volumes for the classification task; mSCLC, metastatic small cell lung cancer.
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split of 80%/20% scans. Inference of the final 
finetuned segmentation model was complet-
ed for all mSCLC scans for use in the classifica-
tion model.

Radiomics characterization and neuroen-
docrine phenotype classification

Each mSCLC scan was labeled based on 
matched gene expression-based NE score 
as NE positive (1) or NE negative (0). All CT 
studies with confirmed hepatic lesions 
that were matched to NE scores within ± 3 
months of the imaging date were included in 
the NE phenotype classification. Scans were 
partitioned with an approximate training/
test split of 80%/20% images using the same 
stratification applied during segmentation. 
Splits were determined at the patient level to 
avoid bias, resulting in 177 scans for training 
and 50 scans for testing (Table 2).

Liver lesion contours obtained from the fi-
nal segmentation model were characterized 
using radiomics. Quantitative image features 
were extracted using PyRadiomics (v3.0.1) 
with a resampling pixel spacing of (1 mm, 1 
mm, 1 mm) for the (x, y, z) voxel coordinates 
and default image standardization param-
eters. A total of 107 radiomic features were 
obtained, representing first-order statistics, 
shape (2D and 3D), gray level co-occurrence 
matrix, gray level run length matrix (glrlm), 

gray level size zone matrix (glszm), neighbor-
ing gray tone difference matrix, and gray lev-
el dependence matrix (gldm). The number 
of lesions per image was determined using 
connected-components-3D (v3.12.1) and 
served as an additional feature, resulting in 
a total of 108 features. From these, a subset 
of imaging characteristics correlated with NE 
phenotype was selected using least absolute 
shrinkage and selection operator (LASSO) re-
gression (scikit-learn v1.2.2). 

Radiomics-based NE phenotype classifi-
cation was conducted using three machine 
learning models: (1) logistic regression 
(scikit-learn v1.2.2), (2) random forest (scikit-
learn v1.2.2), and (3) XGBoost (v2.0.3). For all 
models, default parameters were used. Code 
and raw data for how these models were 
trained are available at https://github.com/
NIH-MIP/mSCLC_Segmentation_Classifica-
tion. All models incorporated the subset of 
imaging features selected using LASSO re-
gression for binary classification of tumors as 
NE (1) or non-NE (0) phenotype. 

Each model was trained with and without 
class-based weights. Five-fold cross-valida-
tion was implemented, and the best model 
was selected using the F1 score and area 
under the receiver operating characteris-
tic curve (AUC) from cross-validation as the 
primary performance criteria. When applied 

to the test set, the ensemble of all five-folds 
was utilized for test set evaluation (average 
prediction of five-folds). 

Statistical analysis

The DICE coefficient,39 a measure that 
describes spatial agreement between two 
image sets, was calculated to quantify the 
performance of the model compared with 
ground truth annotation from radiologists. 
To evaluate detection performance met-
rics at the lesion level, connected-com-
ponents-3D (v3.12.1) was used to identify 
unique lesions in both the ground truth seg-
mentations and model output. Next, each 
lesion was classified as a true positive (i.e., 
ground truth lesion correctly segmented by 
AI), false negative (i.e., ground truth lesion 
was not segmented by the model), or false 
positive (i.e., model segmented a lesion with 
no ground truth correlate) per scan. Each 
segmentation model’s sensitivity, positive 
predictive value (PPV), and false positive 
trends were calculated and reported as sum-
mary statistics.

The relationship between tumor burden 
and NE scores was examined using two tests: 
(1) Spearman correlation analysis (SciPy 
v.1.11.1) for continuous NE scores, and (2) 
Wilcoxon rank sum tests (R v4.4.1) for bina-
rized NE scores. For this analysis, one series 
per patient per scan date was selected. Tu-
mor volume estimates were calculated using 
AI-predicted tumor regions from the final 
segmentation model. 

Finally, the performance of each binary 
classifier was evaluated. Model accuracy, 
sensitivity, specificity, PPV, negative predic-
tive value, F1 scores, and AUC were calculat-
ed (scikit-learn v1.2.2) and compared. Due to 
potential bias in multiple scans coming from 
the same CT study, bootstrap sampling was 
performed at the study level to select one 
scan per study per iteration randomly. The 
mean and 95% confidence intervals (CIs) of 
each performance metric are reported in the 
test set. 

Table 2. Data splits per task

Task Level Training/validation Test¥

Segmentation†

Pts LiTS 121, mSCLC 62 LiTS 10, mSCLC 18

Scans LiTS 121, mSCLC 64 LiTS 10, mSCLC 18

Series volumes LiTS 121, mSCLC 64 LiTS 10, mSCLC 18

Classification (mSCLC 
only)**

Pts 36 14

Scans 92 26

Series volumes 177 50

†, For the segmentation task, two training schemes were used: with and without mSCLC. For the training scheme 
without mSCLC, the entire cohort was reserved for testing. Labels are created at the series volume level. **, For the 
classification task, labels are assigned at the scan level. Patients can have multiple labels (i.e., positive or negative) 
depending on the time point at which the scan/sequencing was completed. ¥, The test set for mSCLC is preserved 
across both tasks on the patient-level (i.e., one unique set of patients was reserved for end-to-end testing of the 
segmentation and classification models). mSCLC, metastatic small cell lung cancer; LiTS, liver tumor segmentation.

Table 3. Comparison of lesion segmentation model performance presents the median DICE coefficient, sensitivity, PPV, and number of false 
positives per scan for all deep learning models implemented for hepatic lesion segmentation. Results are shown for the publicly available 
LiTS dataset and an in-house mSCLC dataset

U-Net SegResNet nnU-Net Finetuned nnU-Net

Metrics LiTS mSCLC LiTS mSCLC LiTS mSCLC LiTS mSCLC

Median DICE 0.439 0.297 0.417 0.418 0.750 0.607 0.771 0.640

Sensitivity 0.395 0.244 0.662 0.447 0.813 0.539 0.826 0.667

PPV 0.971 0.975 0.962 0.987 1.0 0.998 1.0 1.0

FP/scan 0.1 (0-1) 0.1 (0-1) 0.2 (0-1) 0.1 (0-1) 0 0.02 (0-1) 0 0

PPV, positive predictive value; mSCLC, metastatic small cell lung cancer; LiTS, liver tumor segmentation.
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Results
The segmentation model utilized all LiTS 

data and incorporated a subset of scans from 
the mSCLC cohort. Of the 88 patients iden-
tified for possible study inclusion, a total of 
86 patients were included in the final study 
cohort, with two exclusions due to insuffi-
cient data records (no sampling within the 
required timeframe from a scan date; no 
segmentations). Key characteristics of the 
mSCLC cohort are provided in Table 1. Image 
acquisition characteristics are summarized in 
Supplementary Table 1 for each cohort and 
task. 

Lesion detection

The cohort information for model training 
is shown in Table 2. In addition to the LiTS 
cohort, 82 annotated scans (82 unique stud-
ies) from the mSCLC dataset were utilized 
for the segmentation task, of which 50 scans 
were positive for containing hepatic lesions. 
First, models were trained only on the LiTS 
cohort and applied to mSCLC. Among the 
three deep learning models implemented 
for automated hepatic lesion detection and 
segmentation, the 3D fullres nnU-Net model 
provided the most accurate and robust re-
sults for the test set from both datasets. Its 
detection performance had a median DICE 
score of 0.75 and 0.607, lesion-level sensitivi-
ty of 0.813 and 0.539, and PPV of 1.0 and 0.99 
for the LiTS and mSCLC test sets, respective-
ly. The 3D fullres nnU-Net model also had a 
range of 0–1 false positive lesions per scan 
for both datasets. The U-Net and SegResNet 
models had median DICE scores of 0.439, 
0.417 for the LiTS dataset, and 0.297, 0.418 
for the mSCLC dataset. The U-Net model had 
lesion sensitivities of 0.395 and 0.244, where-
as the SegResNet model achieved 0.662 and 
0.447 for LiTS and mSCLC. A summary of each 
model’s performance is provided in Table 3. 

Next, an evaluation was performed to de-
termine how finetuning of the nnU-Net for 
liver lesion segmentation on the mSCLC data 
may improve performance. Here, the 3D full-
res nnU-Net model achieved a median DICE 
of 0.771 and 0.640, with sensitivities of 0.826 
and 0.667 for the LiTS test set and mSCLC 
test set, respectively. For both datasets, the 
model had a PPV of 1.0 and 0 false positives 
per scan. Representative images of cases 
with high and low concordance between the 
AI-predicted and ground truth annotations 
of mSCLC liver lesions from the test set are 
provided in Figure 2.

Correlation analysis of tumor burden and 
neuroendocrine status

A statistically significant correlation was 
found between tumor burden and NE scores 
for continuous data (Spearman: 0.252, P val-
ue: 0.0059) and binarized data (Wilcoxon rank 
sum P value: 0.028). Further analysis revealed 
that cfDNA samples had greater dependence 
on tumor volume, with a statistically signifi-
cant correlation between tumor burden and 
cfDNA-derived NE scores (Spearman: 0.446, 
P value: 0.00057; Wilcoxon rank sum P val-
ue: 0.0013). Conversely, biopsy-derived NE 
scores did not have a statistically significant 
correlation with tumor volume (Spearman: 
−0.0738, P value: 0.5680; Wilcoxon rank sum 
P value: 0.253). Correlation plots are provided 
in Figure 3. 

Neuroendocrine phenotype classification

A total of 227 scans from 118 CT studies 
were used for the NE classification task after 
excluding scans with no hepatic lesions by 
radiologist read (n = 92 scans), scans with 
no corresponding RNA sequencing (RNAseq) 
or cfDNA data (n = 19), or false negatives by 
segmentation model (n = 6 volumes). Of the 
usable data, 172 scans (89 studies) were iden-
tified as NE positive and 55 scans (29 stud-

ies) were identified as NE negative (Table 1). 
The LASSO feature selection was performed 
within the training set, identifying 20/108 
radiomic features correlated with NE-related 
tumor phenotypes for inclusion in the clas-
sification model. The distribution of selected 
radiomic feature categories was as follows: 
30% shape, 25% glszm, 20% gldm, 15% first 
order statistics, and 10% glrlm. Among these, 
shape was the most dominant radiomic fea-
ture type found in the subset. The top five 
imaging feature characteristics determined 
during feature selection were minor axis 
length, maximum 2D diameter row, major 
axis length, gldm large dependence empha-
sis, and first order variance. A full list of the 
selected radiomic features and a distribution 
summary of the selected feature type are 
provided in Figure 4. 

For all evaluated models, weighted train-
ing did not substantially boost the predictive 
performance of the algorithms (Supplemen-
tary Table 2), nor did they generalize bet-
ter to the test set (Supplementary Table 3), 
regardless of the optimization strategy for 
determining the best weight. Based on the 
cross-validation performance, the random 
forest classifier had the highest F1 (mean 
0.86; range 0.81, 0.91) and AUC (mean: 0.68; 
range: 0.56, 0.81) (Supplementary Table 2). 
All calculated metrics for the NE phenotype 
classification task are summarized in Table 4, 
where the logistic regression model general-
ized better than the random forest model by 
AUC (mean: 0.71; 95% CI: 0.59–0.82 vs. mean 
0.58; CI: 0.48–0.69, respectively), though F1 
and accuracy metrics were similar across all 
models, likely due to the imbalance in favor 
of the positive class (NE). The 50 scans in 
the test cohort represented 26 unique CT 
studies. Breaking accuracy down further by 
scan-level classification agreement across 
series volumes: 18/24 scans with multiple 
series volumes were correctly classified in 

Figure 2. Representative results of the finetuned nnU-Net lesion detection model. Two metastatic small cell lung cancer (mSCLC) test cases are provided with liver 
(shown in red) and lesion (shown in green) segmentations from ground truth annotations and artificial intelligence (AI) predictions. A single axial slice from the 
three-dimensional segmentation is shown. (a, b) Example of an mSCLC test case with high concordance between the ground truth and AI-predicted lesions; DICE: 
0.71. (c, d) Example of an mSCLC test case with low concordance between ground truth and AI-predicted lesions; DICE: 0.51.

a b c d
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Figure 3. Correlation analysis of tumor burden to neuroendocrine scores. (a) There is a statistically significant correlation between tumor burden and neuroendocrine 
(NE) scores for both continuous data (Spearman: 0.252, P value: 0.0059) and binarized NE scores (Wilcoxon rank sum test statistic: 2.191, P value: 0.028). This analysis 
utilizes NE scores from both circulating free DNA (cfDNA) and biopsy samples. (b) Correlation plots of tumor burden and NE scores (top) and NE class (bottom) 
derived from cfDNA samples. There is a statistically significant (Spearman: 0.446, P value: 0.00057; Wilcoxon rank sum test statistic: 3.225, P value: 0.0013) tumor 
volume dependence in cfDNA-derived NE scores. (c) Correlation plots for biopsy-derived analysis of tumor burden and NE scores (top) or NE class (bottom) showing 
no statistically relevant relationship between biopsy-derived NE scores and tumor volume estimates. 

a b c

Figure 4. Distribution of selected feature types and list of selected radiomics features. The distribution of each feature type is as follows: 30% shape, 25% gray level 
size zone matrix, 20% gray level dependent matrix, 15% first order statistics, 10% gray level run length matrix. Least absolute shrinkage and selection operator 
regression identified 20 features correlated to binarized neuroendocrine scores among 108 radiomic quantities. All selected radiomic features are listed by group. 

Table 4. Scan-level mSCLC NE phenotype classification results in the test set, derived from ensemble of five-fold cross-validation. Reported 
are mean and 95% CIs from 1000 bootstrap samples, sampling one scan (series) per CT study date per iteration

Model Accuracy PPV NPV Sensitivity Specificity F1 AUC

LR 0.79  
(0.73, 0.85)

0.81 
(0.78, 0.83)

0.64  
(0.33, 1.00)

0.95  
(0.90, 1.00)

0.25  
(0.17, 0.33)

0.87  
(0.84, 0.91)

0.71  
(0.59, 0.82)

RF 0.77  
(0.69, 0.85)

0.82  
(0.77, 0.86)

0.50  
(0.25, 0.75)

0.90  
(0.85, 0.95)

0.33  
(0.17, 0.50)

0.86  
(0.81, 0.90)

0.58  
(0.48, 0.69)

XGB 0.79  
(0.73, 0.85)

0.84  
(0.81, 0.86)

0.56  
(0.40, 0.75)

0.90  
(0.85, 0.95)

0.42  
(0.33, 0.50)

0.87  
(0.83, 0.90)

0.63  
(0.48, 0.78)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; mSCLC, metastatic small cell lung cancer; CT, computed 
tomography; CI, confidence interval
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both series volumes, 4/24 scans were incor-
rectly classified in both series volumes, and 
2/24 scans had different classification results 
across the different series. The two scans 
with only a single series volume available 
were both correctly classified.

Failure analysis revealed that 8/10 of mis-
classifications were associated with NE scores 
near the boundary (NE score: 0) and with cfD-
NA-derived NE scores. Misclassified observa-
tions skewed to the NE-negative phenotype 
(Figure 5a), with a mean NE score of −0.007 as 
presented in Figure 5b. The NE classification 
results showed an AUC of 0.528 when evalu-
ated on cfDNA-derived data alone, although 
they showed an AUC of 0.984 when strictly 
evaluated on biopsy-derived transcriptomic 
data, as shown in Figure 5c.

Discussion
Patients with SCLC often present with 

hepatic metastases.9,40 Characterizing NE 
profiles of mSCLC lesions offers a pathway 
to stratify patients based on distinct ther-
apeutic vulnerabilities of their molecular 
subtypes.13 We demonstrate the potential of 
deep learning on automated liver lesion de-
tection and the feasibility of using radiomics 
to describe properties of mSCLC tumors. This 
framework can enable the determination of 
patients’ NE status as positive or negative 
for bearing an NE-like phenotype without 

resorting to invasive biopsy procedures and 
relying on scans obtained as part of routine 
staging studies. Our 3D nnU-Net segmen-
tation model demonstrated that hepatic le-
sions can be accurately detected for patient 
populations with highly variable disease 
characteristics (e.g., a wide range of tumor 
size, varying number of tumors in a single 
scan) using a fully automated platform. We 
also showed the possibility of stratifying 
patients with SCLC by their NE status using 
radiomic features extracted from routinely 
acquired abdominal CT scans of metastatic 
liver lesions.

The finetuned nnU-Net segmentation 
model was able to identify liver lesions with 
a median DICE score of 0.771 for the publicly 
available data (LiTS) and 0.640 for our internal 
mSCLC dataset. It also showed adeptness in 
locating regions with suspected lesions in CT 
images with high sensitivity (LiTS: 0.826 and 
mSCLC: 0.667) that outperformed previously 
reported models (ISBI 2017: 0.458, MICCAI 
2017: 0.515, MICCAI 2018: 0.554)25 while hav-
ing low false positive rates (0–1 false positive 
per scan) and comparable tumor-level DICE 
scores (ISBI 2017: 0.674, MICCAI 2017: 0.702, 
MICCAI 2018: 0.739)25 for the public dataset. 
Further characterization of the model’s be-
havior on mSCLC cases without ground truth 
reports of a lesion (n = 94) revealed that false 
positive predictions typically were small in 
volume (0.638 ± 1.73 cm3). Overall, our de-

tection tool not only offers valuable improve-
ments to previous liver lesion segmentation 
benchmarks but also enables automating 
the lesion annotation process for radiomics 
analysis. 

Correlation analysis of AI-predicted le-
sions showed that tumor burden has a statis-
tically significant association with NE status. 
Our results revealed that NE scores exhibit 
dependence on tumor volume, especially 
when expression profiles were derived from 
cfDNA samples. This finding is consistent 
with previous studies showing a correlation 
between tumor burden and cfDNA in NE-re-
lated34,41 and lung42 neoplasms, although 
their exact relationship remains elusive.43 
This is also supported by our radiomics 
analysis, shows that shape—which includes 
measurements of tumor size—is the most 
frequently selected radiomic feature type 
during model development. These findings 
indicate that tumor burden may be an indi-
rect measure of NE expression in mSCLC tu-
mors. Recent studies have demonstrated a 
strong correlation between cfDNA-derived 
and RNA-derived expression scores for NE 
phenotyping.13,34-36 However, the same vol-
ume-based relationship was not observed 
in biopsy-based RNAseq determination of 
NE phenotype. This discrepancy may be 
explained by tumor heterogeneity, where 
cfDNA-derived expression metrics are an 
aggregate of multiple lesions throughout 

Figure 5. Failure analysis of the neuroendocrine (NE) phenotype classifier. (a) The NE score distribution based on prediction status (correct vs. incorrect). The mean 
NE score of observations associated with incorrect predictions is close to the NE score boundary (NE score: 0) that divides between NE-positive and NE-negative 
phenotypes. (b) Summary of the NE scores by prediction status. Correctly predicted observations had an NE score range of −0.123 to 0.370, a mean NE score of 
0.127, and a median NE score of 0.117. Incorrectly predicted observations had a score range of −0.123 to 0.333, a mean NE score of −0.007, and a median NE score 
of −0.029. (c) Evaluation of classifier performance based on sampling type [biopsy vs. circulating free DNA (cfDNA)] revealed better predictive performance on 
biopsy data than cfDNA data. The NE phenotype classifier had an accuracy of 0.90 and an area under the receiver operating characteristic curve (AUC) of 0.984 for 
observations associated with biopsy sampling; the classifier achieved an accuracy of 0.733 and an AUC of 0.528 for cases associated with cfDNA tissue sampling.

a b

c
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the patient, whereas biopsy-derived RNAseq 
expression is sampled directly from a single 
lesion. This heterogeneity component can 
also explain why more errors in NE prediction 
were observed in cfDNA-derived samples, 
as metastatic lesions elsewhere in the body 
may contribute to this expression, despite 
the predominance of liver lesions in these 
patients. However, these hypotheses cannot 
be evaluated within the patients evaluated in 
this study due to the limited sample size and 
lack of multiple targeted biopsy-based sam-
ples for RNAseq expression. 

To our knowledge, techniques for pre-
dicting patient-level SCLC NE status have 
yet to be explored. Our approach in integrat-
ing the molecular phenotypic landscape of 
SCLC with image-extracted tumor markers 
offers a path towards building translational 
computing workflows that may help tailor 
SCLC treatment. In this study, we show that 
a logistic regression classifier can distinguish 
NE phenotypes using radiomics data with 
80% accuracy (0.79 ± 0.04) and an AUC of 
0.73 (0.70 ± 0.08). We noted that the pheno-
type classifier demonstrated high sensitivity 
for NE-positive tumors but low specificity 
for NE-negative tumors. This classifier was 
trained and tested on heterogeneous image 
acquisition settings, leading to consistency 
in performance for multiple reconstructions 
(series volumes) within a single study; how-
ever, further validation is warranted.

Our approach has several limitations. This 
is a relatively small patient cohort of meta-
static patients with SCLC; the classification 
algorithm was trained and validated in 227 
scans from 50 patients, and further research 
is warranted. We were underpowered to 
perform classification based on the Riley et 
al.44 criterion, increasing the likelihood of our 
algorithm overfitting to the training pop-
ulation. Our data utilize a mixture of biop-
sy-sampled and cfDNA-based NE scores. The 
cfDNA sampling is comparatively easier but 
captures signals from both cancerous and 
non-cancerous components. This impacts 
our ability to describe with confidence the 
NE expression profiles specific to each lesion. 
Next, our framework utilizes a cascaded al-
gorithm that analyzes biomedical imaging 
data in a stepwise fashion. This workflow 
inherently propagates segmentation errors 
and failures at the first step to the radiomics 
analysis, which occurs downstream. Since ra-
diomics is volume dependent, the effective-
ness of the tumor phenotype classifier relies 
on the performance of the lesion detection 
tool. Our DICE performance indicates that 
the model did not perform as well in mSCLC 

cases (DICE <0.7) compared with LiTS (DICE 
>0.7). This may be influenced by high disease 
burden and complex anatomy from exten-
sive prior treatments, or it can affect cases 
with very small lesions, which are difficult 
to identify. Further work on how changes 
in predicted volumes impact radiomics and 
downstream classification is needed. Simi-
larly, further investigation into the effects of 
contrast use and acquisition parameters is 
warranted. Third, our NE classification task is 
conducted at the image level rather than the 
lesion level. This primarily describes the bulk 
NE profile rather than tumor-specific charac-
teristics. Any heterogeneity reflected across 
the patients’ disease burden cannot be eval-
uated through the current workflow. Future 
validation in lesion-based assessment for 
samples with targeted sequencing may pro-
vide more context to individual signatures. 
Finally, the data distribution of NE positive 
to NE negative is largely unbalanced, making 
it difficult to further optimize the machine 
learning classifier to better detect NE-nega-
tive phenotypes. 

In conclusion, deep learning and radiom-
ics-based analysis enable automated detec-
tion and characterization of SCLC liver me-
tastasis. Using AI-based platforms, routinely 
acquired CT scans may be used to determine 
the NE status of patients with mSCLC liver 
lesions. This could enable clinicians to tailor 
SCLC treatments based on a patient’s NE sta-
tus and its associated molecular tumor pro-
file.

Footnotes

Conflict of interest disclosure

The authors declared no conflicts of inter-
est.

Funding 

This research was supported in part by 
the Center for Cancer Research, Nation-
al Cancer Institute, National Institutes of 
Health Intramural Research Program project 
number ZIABC012163 and ZIABC011793. 
The research was supported in part by the 
NIH Undergraduate Scholarship Program 
(S.T.). The contributions of the NIH author(s) 
were made as part of their official duties as 
NIH federal employees, are in compliance 
with agency policy requirements, and are 
considered Works of the United States Gov-
ernment. However, the findings and conclu-
sions presented in this paper are those of the 
author(s) and do not necessarily reflect the 
views of the NIH or the U.S. Department of 
Health and Human Services.

References
1.	 van Meerbeeck JP, Fennell DA, De Ruysscher 

DK. Small-cell lung cancer. Lancet. 
2011;378(9804):1741-1755. [Crossref]

2.	 Thomas A, Pommier Y. Small cell lung cancer: 
time to revisit DNA-damaging chemotherapy. 
Sci Transl Med. 2016;8(346):346fs12. [Crossref]

3.	 Thomas A, Mohindroo C, Giaccone G. 
Advancing therapeutics in small-cell lung 
cancer. Nat Cancer. 2025;6(6):938-953. 
[Crossref]

4.	 George J, Lim JS, Jang SJ, et al. Comprehensive 
genomic profiles of small cell lung cancer. 
Nature. 2015;524(7563):47-53.  [Crossref]

5.	 Sher T, Dy GK, Adjei AA. Small cell lung cancer. 
Mayo Clin Proc. 2008;83(3):355-367. [Crossref]

6.	 Thomas A, Pattanayak P, Szabo E, Pinsky P. 
Characteristics and outcomes of small cell 
lung cancer detected by CT screening. Chest. 
2018;154(6):1284-1290. [Crossref]

7.	 Herzog BH, Devarakonda S, Govindan R. 
Overcoming chemotherapy resistance in 
SCLC. J Thorac Oncol. 2021;16(12):2002-2015. 
[Crossref]

8.	 Jackman DM, Johnson BE. Small-cell lung 
cancer. Lancet. 2005;366(9494):1385-1396. 
[Crossref]

9.	 Cai H, Wang H, Li Z, Lin J, Yu J. The prognostic 
analysis of different metastatic patterns 
in extensive-stage small-cell lung cancer 
patients: a large population-based study. 
Future Oncol. 2018;14(14):1397-1407. 
[Crossref]

10.	 Kagohashi K, Satoh H, Ishikawa H, Ohtsuka 
M, Sekizawa K. Liver metastasis at the time 
of initial diagnosis of lung cancer. Med Oncol. 
2003;20(1):25-28. [Crossref]

11.	 Rudin CM, Poirier JT, Byers LA, et al. Molecular 
subtypes of small cell lung cancer: a synthesis 
of human and mouse model data. Nat Rev 
Cancer. 2019;19(5):289-297. [Crossref]

12.	 Schroeder BA, Thomas A. SCLC subtypes 
and biomarkers of the transformative 
immunotherapy responses. J Thorac Oncol. 
2023;18(9):1114-1117. [Crossref]

13.	 Lissa D, Takahashi N, Desai P, et al. 
Heterogeneity of neuroendocrine 
transcriptional states in metastatic small cell 
lung cancers and patient-derived models. Nat 
Commun. 2022;13(1):2023. [Crossref]

14.	 Thomas A, Takahashi N, Rajapakse VN, et al. 
Therapeutic targeting of ATR yields durable 
regressions in small cell lung cancers with high 
replication stress. Cancer Cell. 2021;39(4):566-
579.e7. [Crossref]

15.	 Takahashi N, Kim S, Schultz CW, et al. 
Replication stress defines distinct molecular 
subtypes across cancers. Cancer Res Commun. 
2022;2(6):503-517. [Crossref]

16.	 Roper N, Velez MJ, Chiappori A, et al. Notch 
signaling and efficacy of PD-1/PD-L1 
blockade in relapsed small cell lung cancer. 
Nat Commun. 2021;12(1):3880. [Crossref]

https://doi.org/10.1016/S0140-6736(11)60165-7
https://doi.org/10.1126/scitranslmed.aaf6282
https://doi.org/10.1038/s43018-025-00996-1
https://doi.org/10.1038/nature14664
https://doi.org/10.4065/83.3.355
https://doi.org/10.1016/j.chest.2018.07.029
https://doi.org/10.1016/j.jtho.2021.07.018
https://doi.org/10.1016/S0140-6736(05)67569-1
https://doi.org/10.2217/fon-2017-0706
https://doi.org/10.1385/MO:20:1:25
https://doi.org/10.1038/s41568-019-0133-9
https://doi.org/10.1016/j.jtho.2023.06.009
https://doi.org/10.1038/s41467-022-29517-9
https://doi.org/10.1016/j.ccell.2021.02.014
https://doi.org/10.1158/2767-9764.crc-22-0168
https://doi.org/10.1038/s41467-021-24164-y


 

Characterization of liver metastasis in small cell lung cancer • 

17.	 Gay CM, Stewart CA, Park EM, et al. Patterns 
of transcription factor programs and immune 
pathway activation define four major 
subtypes of SCLC with distinct therapeutic 
vulnerabilities. Cancer Cell. 2021;39(3):346-
360.e7. [Crossref]

18.	 Nabet BY, Hamidi H, Lee MC, et al. Immune 
heterogeneity in small-cell lung cancer and 
vulnerability to immune checkpoint blockade. 
Cancer Cell. 2024;42(3):429-443.e4. [Crossref]

19.	 Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. A 
review of deep learning based methods for 
medical image multi-organ segmentation. 
Phys Med. 2021;85:107-122. [Crossref]

20.	 Jiang H, Zhou Y, Lin Y, Chan RCK, Liu J, Chen 
H. Deep learning for computational cytology: 
a survey. Med Image Anal. 2023;84:102691. 
[Crossref]

21.	 Alakwaa W, Nassef M, Badr A. Lung cancer 
detection and classification with 3D 
convolutional neural network (3D-CNN). Int J 
Adv Comput Sci Appl. 2017;8(8). [Crossref]

22.	 Yu X, Jin F, Luo H, Lei Q, Wu Y. Gross tumor volume 
segmentation for stage III NSCLC radiotherapy 
using 3D ResSE-Unet. Technol Cancer Res Treat. 
2022;21:15330338221090847. [Crossref]

23.	 Christ PF, Elshaer MEA, Ettlinger F, et al. 
Automatic liver and lesion segmentation in 
CT using cascaded fully convolutional neural 
networks and 3D conditional random fields. 
In: Ourselin S, Joskowicz L, Sabuncu MR, Unal 
G, Wells W, eds. Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2016. 
Vol 9901. Lecture Notes in Computer Science. 
Springer International Publishing; 2016:415-
423. [Crossref]

24.	 Chlebus G, Schenk A, Moltz JH, van Ginneken 
B, Hahn HK, Meine H. Automatic liver tumor 
segmentation in CT with fully convolutional 
neural networks and object-based 
postprocessing. Sci Rep. 2018;8(1):15497. 
[Crossref]

25.	 Bilic P, Christ P, Li HB, et al. The liver tumor 
segmentation benchmark (LiTS). Med Image 
Anal. 2023;84:102680. [Crossref]

26.	 Avanzo M, Stancanello J, Pirrone G, Sartor G. 
Radiomics and deep learning in lung cancer. 

Strahlenther Onkol. 2020;196(10):879-887. 
[Crossref]

27.	 Gitto S, Interlenghi M, Cuocolo R, et al. 
MRI radiomics-based machine learning for 
classification of deep-seated lipoma and 
atypical lipomatous tumor of the extremities. 
Radiol Med. 2023;128(8):989-998. [Crossref]

28.	 Menon N, Guidozzi N, Chidambaram S, Markar 
SR. Performance of radiomics-based artificial 
intelligence systems in the diagnosis and 
prediction of treatment response and survival 
in esophageal cancer: a systematic review 
and meta-analysis of diagnostic accuracy. Dis 
Esophagus. 2023;36(6):doad034. [Crossref]

29.	 Abbaspour S, Barahman M, Abdollahi H, et 
al. Multimodality radiomics prediction of 
radiotherapy-induced the early proctitis and 
cystitis in rectal cancer patients: a machine 
learning study. Biomed Phys Eng Express. 
2023;10(1). [Crossref]

30.	 Lubner MG, Stabo N, Lubner SJ, et al. CT 
textural analysis of hepatic metastatic 
colorectal cancer: pre-treatment tumor 
heterogeneity correlates with pathology 
and clinical outcomes. Abdom Imaging. 
2015;40(7):2331-2337. [Crossref]

31.	 Kiryu S, Akai H, Nojima M, et al. Impact of 
hepatocellular carcinoma heterogeneity 
on computed tomography as a prognostic 
indicator. Sci Rep. 2017;7(1):12689. [Crossref]

32.	 Akai H, Yasaka K, Kunimatsu A, et al. Predicting 
prognosis of resected hepatocellular 
carcinoma by radiomics analysis with 
random survival forest. Diagn Interv Imaging. 
2018;99(10):643-651. [Crossref]

33.	 Chaudhary U, Desai PA, Takahashi N, et al. 
Automated detection and segmentation of 
small cell lung cancer liver metastases on 
CT. Journal of Clinical Oncology. 2022;40(16_
suppl):e13555. [Crossref]

34.	 Fialkoff G, Takahashi N, Sharkia I, et al. 
Subtyping of small cell lung cancer using 
plasma cell-free nucleosomes. bioRxiv. 2022. 
[Crossref]

35.	 Zhang W, Girard L, Zhang YA, et al. Small cell 
lung cancer tumors and preclinical models 
display heterogeneity of neuroendocrine 

phenotypes. Transl Lung Cancer Res. 
2018;7(1):32-49. [Crossref]

36.	 Hiatt JB, Doebley AL, Arnold HU, et al. 
Molecular phenotyping of small cell lung 
cancer using targeted cfDNA profiling of 
transcriptional regulatory regions. Sci Adv. 
2024;10(15):eadk2082. [Crossref]

37.	 Medical Open Network for Artificial 
Intelligence (MONAI). Accessed March 11, 
2024. [Crossref]

38.	 Isensee F, Jaeger PF, Kohl SAA, Petersen J, 
Maier-Hein KH. nnU-Net: a self-configuring 
method for deep learning-based biomedical 
image segmentation. Nat Methods. 
2021;18(2):203-211. [Crossref]

39.	 Zou KH, Warfield SK, Bharatha A, et al. 
Statistical validation of image segmentation 
quality based on a spatial overlap index. Acad 
Radiol. 2004;11(2):178-189. [Crossref]

40.	 Nakazawa K, Kurishima K, Tamura T, et al. 
Specific organ metastases and survival in small 
cell lung cancer. Oncol Lett. 2012;4(4):617-620. 
[Crossref]

41.	 Mettler E, Fottner C, Bakhshandeh N, Trenkler 
A, Kuchen R, Weber MM. Quantitative Analysis 
of Plasma Cell-Free DNA and Its DNA Integrity 
and hypomethylation status as biomarkers 
for tumor burden and disease progression 
in patients with metastatic neuroendocrine 
neoplasias. Cancers (Basel). 2022;14(4):1025. 
[Crossref]

42.	 Hyun MH, Lee ES, Eo JS, et al. Clinical 
implications of circulating cell-free DNA 
quantification and metabolic tumor burden 
in advanced non-small cell lung cancer. Lung 
Cancer. 2019;134:158-166. [Crossref]

43.	 Nygaard AD, Holdgaard PC, Spindler KL, 
Pallisgaard N, Jakobsen A. The correlation 
between cell-free DNA and tumour burden 
was estimated by PET/CT in patients with 
advanced NSCLC. Br J Cancer. 2014;110(2):363-
368. [Crossref]

44.	 Riley RD, Snell KI, Ensor J, et al. Minimum 
sample size for developing a multivariable 
prediction model: PART II - binary and time-to-
event outcomes. Stat Med. 2019;38(7):1276-
1296. [Crossref]  

https://doi.org/10.1016/j.ccell.2020.12.014
https://doi.org/10.1016/j.ccell.2024.01.010
https://doi.org/10.1016/j.ejmp.2021.05.003
https://doi.org/10.1016/j.media.2022.102691
https://doi.org/10.14569/IJACSA.2017.080853
https://doi.org/10.1177/15330338221090847
https://doi.org/10.1007/978-3-319-46723-8_48
https://doi.org/10.1038/s41598-018-33860-7
https://doi.org/10.1016/j.media.2022.102680
https://doi.org/10.1007/s00066-020-01625-9
https://doi.org/10.1007/s11547-023-01657-y
https://doi.org/10.1093/dote/doad034
https://doi.org/10.1088/2057-1976/ad0f3e
https://doi.org/10.1007/s00261-015-0438-4
https://doi.org/10.1038/s41598-017-12688-7
https://doi.org/10.1016/j.diii.2018.05.008
https://doi.org/10.1200/JCO.2022.40.16_suppl.e13555
https://doi.org/10.1101/2022.06.24.497386
https://doi.org/10.21037/tlcr.2018.02.02
https://doi.org/10.1126/sciadv.adk2082
https://monai.io/
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1016/s1076-6332(03)00671-8
https://doi.org/10.3892/ol.2012.792
https://doi.org/10.3390/cancers14041025
https://doi.org/10.1016/j.lungcan.2019.06.014
https://doi.org/10.1038/bjc.2013.705
https://doi.org/10.1002/sim.7992


 

 • October 2025 • Diagnostic and Interventional Radiology Ty et al.

Supplementary Table 1. Image acquisition characteristics

Cohort Scanner #Scans KVP In-plane resolution Slice thickness Contrast

LİTS cohort N/A 131 N/A 0.768 (0.557,1)

<1 (51) 
1 (38) 
1-5 (33) 
5 (9)

None (1) 
Venous (130)

mSCLC 
segmentation
(n = 82 series 
volumes)

SIEMENS 73 120 0.820 (0.691-0.977) 1 (3)
None (5) 
Venous (66) 
Arterial (2)

Canon Medical Systems 3 120 0.858 (0.782-0.858) 1 (1) 
5 (2) Venous

GE Medical Systems 1 120 0.7813 1-5 (1) Venous

TOSHIBA 5 120 0.938 (0.743-0.938) 1 (1) 
5 (4)

Arterial (1) 
Venous (4)

mSCLC 
classification
(n = 227 series 
volumes)

SIEMENS 207 120 (205) 
100 (2) 0.820 (0.677-0.977) 1 (105) 

5 (102)
None (7) 
Venous (200)

Canon Medical Systems 12 120 0.839 (0.782, 0.9) 1 (6) 
5 (6) Venous

GE Medical Systems 2 120 0.7813, 0.7031 1-5 (2) Arterial (1) 
Venous (1)

TOSHIBA 6 120 0.782 (0.743, 0.782) 1 (3) 
5 (3)

Arterial (1) 
Venous (5)

LiTS, liver tumor segmentation; mSCLC, metastatic small cell lung cancer; KVP, kilovolt peak; N/A, not available.

Supplementary Table 2. Cross-validation performance across weighted and unweighted models

Weighted Optim Pos class weight Model F1 AUC

No - - Logistic regression 0.85 (0.81, 0.89) 0.55 (0.45, 0.67)

No - - Random forest 0.86 (0.81, 0.91) 0.68 (0.56, 0.81)

No - - XGBoost 0.84 (0.79, 0.91) 0.59 (0.48, 0.69)

Yes AUC 0.25 Logistic regression 0.85 (0.82, 0.89) 0.56 (0.46, 0.69)

Yes BAL - Logistic regression 0.70 (0.64, 0.83) 0.54 (0.43, 0.65)

Yes F1 4.9 Logistic regression 0.85 (0.82, 0.89) 0.55 (0.46, 0.69)

Yes AUC 0.3 Random forest 0.84 (0.77, 0.91) 0.67 (0.55, 0.80)

Yes BAL - Random forest 0.84 (0.76, 0.91) 0.67 (0.56, 0.79)

Yes F1 8.6 Random forest 0.85 (0.80, 0.91) 0.67 (0.54, 0.81)

Yes AUC 0.05 XGBoost 0.30 (0.14, 0.50) 0.58 (0.48, 0.68)

Yes BAL 0.321 XGBoost 0.72 (0.65, 0.79) 0.59 (0.48, 0.69)

Yes F1 0.8 XGBoost 0.84 (0.78, 0.91) 0.59 (0.48, 0.71)

Optim: Method used to select positive class weight. AUC: Best AUC from all evaluated class weights. F1: Maximum F1 score from all evaluated class weights. BAL: Dataset 
distribution-based weighting. AUC, area under the receiver operating characteristic curve.

Supplementary Table 3. Test set performance for weighted training. 5-fold cross-validation bootstrap mean (95% CI) from 1000 random 
samplings of one series/study. Performance based on ensemble of models

Weight Optim Model Accuracy PPV NPV Sensitivity Specificity F1 AUC

Y AUC LR 0.81 (0.77, 0.85) 0.80 (0.77, 0.83) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.16 (0.00, 0.33) 0.89 (0.87, 0.91) 0.70 (0.59, 0.82)

Y BAL LR 0.58 (0.50, 0.65) 0.95 (0.89, 1.00) 0.34 (0.29, 0.40) 0.48 (0.40, 0.55) 0.91 (0.83, 1.00) 0.63 (0.55, 0.71) 0.72 (0.59, 0.86)

Y F1 LR 0.81 (0.77, 0.85) 0.80 (0.77, 0.83) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.16 (0.00, 0.33) 0.89 (0.87, 0.91) 0.68 (0.55, 0.81)

Y AUC RF 0.69 (0.62, 0.77) 0.80 (0.75, 0.85) 0.33 (0.17, 0.50) 0.80 (0.70, 0.90) 0.33 (0.17, 0.50) 0.80 (0.74, 0.86) 0.61 (0.50, 0.72)

Y BAL RF 0.71 (0.62, 0.81) 0.81 (0.75, 0.86) 0.36 (0.17, 0.60) 0.82 (0.75, 0.90) 0.33 (0.17, 0.50) 0.81 (0.75, 0.88) 0.62 (0.52, 0.71)

Y F1 RF 0.77 (0.73, 0.81) 0.78 (0.76, 0.80) 0.51 (0.00, 1.00) 0.97 (0.95, 1.00) 0.09 (0.00, 0.17) 0.87 (0.84, 0.89) 0.53 (0.43, 0.63)

Y AUC XGB 0.33 (0.31, 0.35) 1.00 (1.00, 1.00) 0.26 (0.25, 0.26) 0.13 (0.10, 0.15) 1.00 (1.00, 1.00) 0.22 (0.18, 0.26) 0.63 (0.53, 0.75)

Y BAL XGB 0.48 (0.42, 0.54) 0.79 (0.69, 0.90) 0.24 (0.15, 0.31) 0.45 (0.45, 0.45) 0.58 (0.33, 0.83) 0.57 (0.55, 0.60) 0.64 (0.49, 0.78)

Y F1 XGB 0.73 (0.65, 0.81) 0.84 (0.79, 0.89) 0.43 (0.29, 0.60) 0.80 (0.70, 0.90) 0.50 (0.33, 0.67) 0.82 (0.76, 0.88) 0.64 (0.50, 0.78)

Optim: Method used to select positive class weight. AUC: Best AUC from all evaluated class weights. F1: Maximum F1 score from all evaluated class weights. BAL: Dataset 
distribution-based weighting. RF, random forest; LR, logistic regression; XGB, XG boost; AUC, area under the receiver operating characteristic curve; CI, confidence interval.


