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Early prediction of neoadjuvant chemotherapy efficacy among patients 
with triple-negative breast cancer using an ultrasound-based radiomics 
nomogram

PURPOSE
To develop and validate a radiomics nomogram based on early ultrasound (US) imaging for pre-
dicting pathologic complete response (pCR) in patients with triple-negative breast cancer (TNBC) 
receiving neoadjuvant chemotherapy (NAC).

METHODS
This retrospective study included 328 patients with TNBC treated between September 2019 and 
January 2024, divided into a training cohort (n = 230) and a validation cohort (n = 98). Clinicopath-
ologic data, US features before NAC, tumor volume reduction (TVR) after two cycles of NAC, and 
radiomics features were collected. Multiple logistic regression was applied to identify the potential 
predictors of pCR. The efficacy of the nomogram was evaluated through the receiver operating 
characteristic, calibration, and decision curve analyses. The study was approved by the ethics com-
mittee on February 28, 2024, with approval number 2023-SR-799, and the requirement for informed 
consent was waived.

RESULTS
Twelve features were selected to construct the radiomics signature (RS). The nomogram, incorpo-
rating tumor histologic grade, TVR, and RS, yielded an area under the curve of 0.856 [95% confi-
dence interval (CI), 0.807–0.905] in the training cohort and 0.836 (95% CI, 0.749–0.923) in the valida-
tion cohort, outperforming both the clinico-ultrasonic and RS models. The calibration and decision 
curves confirmed the nomogram’s excellent calibration and clinical utility.

CONCLUSION
The nomogram, which includes US characteristics, clinical variables, and radiomics features, exhib-
ited satisfactory performance in predicting NAC efficacy in patients with TNBC.

CLINICAL SIGNIFICANCE
The US-based radiomics nomogram, incorporating histologic grade, TVR, and RS, shows prelimi-
nary clinical application potential for predicting NAC efficacy in patients with TNBC.
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Breast cancer has become the most prevalent malignancy in women worldwide and the 
leading cause of cancer-related mortality, according to the latest global cancer statistics 
from 2022.1 Triple-negative breast cancer (TNBC), which is characterized by the absence 

of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 
(HER-2), is more likely to involve lymph nodes and has an early tendency toward recurrence.2,3 
Its heterogeneity and lack of specific molecular targets contribute to its higher likelihood of 
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early recurrence and poorer prognosis com-
pared with other breast cancer subtypes.4-7 

Neoadjuvant chemotherapy (NAC) has 
shown promising results for patients with 
TNBC by decreasing the tumor burden, in-
creasing the breast-conserving rate, de-es-
calating axillary surgery, and allowing treat-
ment reorientation in patients with tumor 
progression.8 Pathologic complete response 
(pCR) after NAC has become a surrogate 
marker for both disease-free survival and 
long-term overall survival.9,10 However, his-
tological analysis of surgical specimens, the 
gold standard for response evaluation, is only 
accessible following the completion of NAC 
treatment.11 Thus, evaluating the response to 
chemotherapy early in the treatment course 
to more accurately forecast the likelihood of 
achieving pCR in patients with TNBC could 
help clinicians modify ineffective treatments 
or avoid unnecessary treatment escalation.12 
Imaging methods for predicting the re-
sponse to NAC include ultrasound (US), mag-
netic resonance imaging (MRI), and positron 
emission tomography (PET).13,14 Compared 
with MRI and PET, US is more cost-effective 
and suitable for repeated evaluation during 
NAC, playing a pivotal role in detecting treat-
ment response.15 Nevertheless, few studies 
have examined the correlation between pCR 
in TNBC and US features, highlighting the 
need for further investigation into US as an 
early predictor of NAC response.

Radiomics is a new field of computer-aid-
ed technology that extracts and analyzes a 
large number of quantitative medical image 
features that are difficult for the human eye 
to detect, applying these features for clini-
cal decision-making  to enhance diagnostic 
accuracy.16,17 Previous studies have shown 
that radiomics can be used to detect dis-
ease status, evaluate the response to NAC, 
and provide valuable information on cancer 

aggressiveness.18-20 For the assessment and 
prediction of early NAC response, radiomics 
nomograms based on MRI are most wide-
ly used, with limited studies utilizing US for 
therapeutic evaluation.21 We hypothesized 
that an early radiomics nomogram combin-
ing US features, clinical findings, and a radio-
mics signature (RS) could provide additional 
information to estimate the pCR in patients 
with TNBC.

Therefore, this study aimed to develop an 
early US-based radiomics nomogram to pre-
dict pCR after NAC in patients with TNBC. 

Methods

Patients in this study

The retrospective study was approved by 
the Ethics Committee of The First Affiliated 
Hospital of Nanjing Medical University, and 
the requirement for informed consent was 
waived. The approval number was 2023-
SR-799 and approval date was 28 February 
2024. A total of 412 consecutive patients 
with pathologically confirmed TNBC who 
underwent NAC at our institution between 
September 2019 and January 2024 were 
considered, and 84 were excluded. All pa-
tients received eight cycles of NAC (taxane- 
and anthracycline-based chemotherapy 
regimens) followed by surgery. The inclusion 

criteria were (i) biopsy-confirmed TNBC with-
out distant metastasis, (ii) US examination 
performed prior to NAC, (iii) US examination 
performed after two cycles of NAC, (iv) avail-
ability of complete clinicopathologic and US 
data, and (v) surgery performed after com-
pletion of NAC. The exclusion criteria were 
(i) a history of other tumors, (ii) incomplete 
NAC or surgery performed at an external 
institution, (iii) lack of pre-NAC or post-two-
cycle NAC US data, (iv) poor-quality US imag-
es, and (v) presence of multiple or non-mass 
lesions. Ultimately, 328 eligible patients (age 
range: 20–82 years; mean age: 49.4 years) 
were included and randomly assigned to 
training and validation cohorts at a ratio of 
7:3. The training cohort consisted of 230 pa-
tients (pCR: 82, non-pCR: 148), and the vali-
dation cohort consisted of 98 patients (pCR: 
32, non-pCR: 66). The study flowchart is pre-
sented in Figure 1.

Ultrasound imaging acquisition and anal-
ysis

All breast US examinations were per-
formed at two time points: before NAC and 
after two cycles of NAC, using either MyLab 
Twice (Esaote S.P.A., Italy) or Samsung RS80A 
(Samsung Medison Co. Ltd., Seoul, South Ko-
rea) equipment. The US features collected 
included the three largest tumor dimensions 
(length, width, and height) in transverse and 

Main points

•	 A clinico-ultrasonic model combining his-
tologic grade and tumor volume reduction 
after two cycles of neoadjuvant chemother-
apy (NAC) is associated with treatment effi-
cacy in patients with triple-negative breast 
cancer (TNBC).

•	 A radiomics signature derived from ultra-
sound (US) features shows excellent po-
tential for predicting pathologic complete 
response in patients with TNBC.

•	 An early US-based radiomics nomogram 
demonstrates favorable performance in 
predicting NAC efficacy and may assist cli-
nicians in identifying potential poor patho-
logical responders. Figure 1. Flowchart showing the study exclusion criteria. TNBC, triple-negative breast cancer; NAC, 

neoadjuvant chemotherapy; US, ultrasound.
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longitudinal views, calcification, posterior 
echo, blood flow, and axillary lymph node 
status. Measurements were obtained by 
two experienced breast sonographers (each 
with >5 years of work experience) who were 
blinded to the clinical information. 

The tumor volume reduction (TVR) per-
centage between the pre-NAC and after two 
cycles of NAC was calculated using the for-
mula:12

where V0 is the pre-NAC tumor volume 
and V2 is the tumor volume after two cycles 
of NAC.

Clinicopathologic data acquisition and 
analysis

Clinical and pathological information, 
including age, menstrual status, and histo-
logic grade, was collected from institutional 
archives. TNBC was defined by negative ex-
pression of the estrogen receptor, progester-
one receptor, and HER-2. For HER-2 assess-
ment, immunohistochemistry scores of 0 or 
1+ were classified as HER-2 negative, and 
tumors with immunohistochemical staining 
of 2+ that lacked HER-2 amplification by flu-
orescence in situ hybridization were also de-
fined as HER-2 negative.22

Chemotherapy and pathologic response 
evaluation

All included patients received four cycles 
of epirubicin and cyclophosphamide once 
every 2 weeks, followed by four additional 
cycles of either the same regimen or tax-
ane-based treatment. In this study, the US 
response was evaluated after the first two 
cycles of epirubicin and cyclophosphamide. 
Surgical specimens were assessed by pathol-
ogists. pCR was defined as the absence of 
invasive carcinoma in the breast and axillary 
lymph nodes, with ductal carcinoma in situ 
permitted (ypT0/is ypN0). 

Radiomics signature construction

The radiomics workflow is illustrated in 
Figures 2a and 2b. Pre-treatment US data 
were collected for the region of interest (ROI) 
segmentation and feature extraction for all 
included patients. An experienced breast so-
nographer manually defined the ROI at the 
maximal diameter plane along the tumor 
contour on the US images using ITK-SNAP 
Version 3.6.0 (www.itksnap.org). Feature 
stability was assessed by calculating the 
intraclass correlation coefficient (ICC), and 

features with an ICC <0.80 were eliminated. 
To avoid overfitting in reducing the redun-
dancy and dimensionality process, the least 
absolute shrinkage and selection operator 
(LASSO) regression algorithm was used to 
screen for features associated with pCR pre-
diction. The development of the RS involved 
the linear combination of the corresponding 
coefficients from the validation and training 
cohorts. 

Development and validation of the nomo-
gram

Clinical data and US features that could 
indicate candidate risk factors for pCR were 
identified using univariate analysis, and 
those with P < 0.05 were subsequently in-
corporated into multiple logistic regression. 
Features with P < 0.05 were considered sta-
tistically significant. The clinical and US risk 
factors were then used to build a clinico-ul-
trasonic model. 

The early US-based radiomic nomogram 
was created based on the RS and the clini-
co-ultrasonic characteristics. Therefore, 
three preoperative prediction models were 
fitted in the training cohort: (i) RS model, (ii) 
clinico-ultrasonic model (clinical factors plus 
US features), and (iii) early US-based radio-
mics nomogram (RS plus clinico-ultrasonic 
model).

Receiver operating characteristic (ROC) 
curve analysis and the area under the curve 
(AUC) were used to evaluate the three mod-

els’ diagnostic performance. Delong’s valida-
tion was then applied to compare the AUCs 
between models and ascertain whether 
there were any notable variations in their 
diagnostic performance. The concordance 
index (C-index) was used to evaluate nomo-
gram performance, where a C-index value of 
0.5 denoted a random chance and 1.0 denot-
ed an exact differentiation of the outcome. 
The Hosmer–Lemeshow test was used to 
evaluate differences between the anticipat-
ed and actual data. The calibration curve of 
the nomogram was plotted for the training 
and validation groups to assess the consis-
tency of the predicted probabilities of pCR 
with the actual results. Ultimately, by calcu-
lating the net benefit at various threshold 
probabilities, a decision curve analysis was 
conducted to evaluate the clinical validity of 
the radiomics nomogram model.

Statistical analysis

All statistical tests were performed using 
SPSS software (version 26.0; IBM, Armonk, 
NY, USA) and R software (version 4.1.2), and a 
two-tailed P < 0.05 was deemed statistically 
significant. Quantitative variables were com-
pared between the training and validation 
cohorts using the t-test. Categorical variables 
were compared using Fisher’s exact test or 
the chi-square test. Continuous variables 
were presented as mean ± standard devia-
tion. The LASSO logistic regression analysis 
was performed using the glmnet package. 
The ROC curve was plotted using the pROC 

Figure 2. (a) Radiomics workflow and (b) study flowchart. US, ultrasound; ROI, region of interest.

a

b
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package. The nomogram, calibration curves, 
and decision curve were created using the 
rms and rmda software packages. The Hmisc 
package was used to calculate the C-index.

Results

Patient characteristics and clinico-ultrason-
ic model

A total of 328 patients meeting the eligi-
bility criteria between September 2019 and 
January 2024 were included. The overall pCR 
rate was 34.76% (114 of 328). There was no 

significant difference in pCR rates between 
the training and validation cohorts [35.7% 
(82/230) and 32.7% (32/98), respectively, P 
= 0.602; Table 1]. Histologic grade and TVR 
were significantly associated with pCR rate 
(both P < 0.05), and multiple logistic regres-
sion analysis revealed that both variables 
were independent clinical risk predictors for 

Table 1. Clinical, histopathological, and US characteristics of the patients in the training and validation cohorts

Characteristics Training cohort (n = 230) P Validation cohort (n = 98) P

pCR (n = 148) non-pCR (n = 82) pCR (n = 66) non-pCR (n = 32)

Age (years, mean ± SD) 49.2 ± 11.8 49.8 ± 9.7 0.692 49.9 ± 9.2 48.4 ± 10.0 0.471

Histologic grade

I–II 42 (28.4%) 40 (48.8%)
0.002

15 (22.7%) 21 (65.6%)
<0.001

III 106 (71.6%) 42 (51.2%) 51 (77.3%) 11 (34.4%)

Menopausal status

Premenopausal 76 (51.4%) 55 (60.4%)
0.008

34 (51.5%) 12 (37.5%)
0.192

Postmenopausal 72 (48.6%) 36 (39.6%) 32 (48.5%) 20 (62.5%)

US-reported tumor size (mm)

≤20 18 (12.2%) 14 (17.1%)

0.284

3 (4.5%) 3 (9.4%)

0.64620–50 106 (71.6%) 60 (73.2%) 52 (78.8%) 24 (75%)

>50 24 (16.2%) 8 (9.7%) 11 (16.7%) 5 (15.6%)

Calcification

Non-calcification 86 (58.1%) 44 (53.7%)
0.514

33 (50%) 21 (65.6%)
0.145

Calcification 62 (41.9%) 38 (46.3%) 33 (50%) 11 (34.4%)

Posterior echo

No change 59 (39.9%) 36 (43.9%)

0.591

33 (50%) 17 (53.1%)

0.964
Enhancement 24 (16.2%) 17 (20.7%) 18 (27.3%) 9 (28.1%)

Shadowing 41 (27.7%) 17 (20.7%) 9 (13.6%) 4 (12.5%)

Mixed 24 (16.2%) 12 (14.7%) 6 (9.1%) 2 (6.3%)

Blood flow grade

0–I 25 (16.9%) 16 (19.5%)
0.619

7 (10.6%) 4 (12.5%)
0.781

II–III 123 (83.1%) 66 (80.5%) 59 (89.4%) 28 (87.5%)

Resistant index

≤0.7 53 (35.8%) 39 (47.6%)
0.081

22 (33.3%) 11 (34.4%)
0.918

>0.7 95 (64.2%) 43 (52.4%) 44 (66.7%) 21 (65.6%)

The number of US-reported abnormal lymph nodes

None 20 (13.5%) 13 (15.9%)

0.157

5 (7.6%) 2 (6.3%)

0.835
≤3 34 (23%) 27 (32.9%) 24 (36.4%) 9 (28.1%)

3–9 71 (48%) 27 (32.9%) 29 (43.9%) 16 (50%)

>9 23 (15.5%) 15 (18.3%) 8 (12.1%) 5 (15.6%)

Lymph node short/long axis ratio

≤0.5 82 (55.4%) 48 (58.5%)
0.646

34 (51.5%) 16 (50%)
0.888

>0.5 66 (44.6%) 34 (41.5%) 32 (48.5%) 16 (50%)

Lymph node type

Presence of lymphatic gates 85 (57.4%) 58 (70.7%)
0.046

43 (65.2%) 15 (46.9%)
0.084

Disappearance of the lymphatic portal 63 (42.6%) 24 (29.3%) 23 (34.8%) 17 (53.1%)

TVR

<80% 138 (93.2%) 43 (52.4%)
<0.001

56 (84.8%) 19 (59.4%)
0.007

≥80% 10 (6.8%) 39 (47.6%) 10 (15.2%) 13 (40.6%)

SD, standard deviation; pCR, pathologic complete response; US, ultrasound; TVR, tumor volume reduction.
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pCR (both P < 0.05; Table 2). The clinico-ul-
trasonic model developed from these two 
variables performed well in both the training 
cohort [AUC: 0.773; 95% confidence interval 
(CI): 0.711–0.835] and the validation cohort 
(AUC: 0.77; 95% CI: 0.674–0.866). Typical US 
images from patients with pCR and non-pCR 
are presented in Figure 3.

Development and validation of the radiom-
ics signature model

From the pre-NAC US images, 766 radio-
mics features were initially extracted. Using 
LASSO regression, these were reduced to 12 
features with non-zero coefficients. The ICC 
showed good reproducibility for selected ra-
diomics feature extraction. A heatmap (Fig-
ure 4a) illustrates the pairwise correlations 
between the selected radiomics features. 
The formula for the final imaging omics score 
is as follows: 

The specific coefficient (α) and charac-
teristics (F) are shown in Figure  4c. Patients 
achieving pCR had significantly higher Rad-
scores than those without pCR in both co-
horts (all P < 0.01, Figure 4b). The RS model 
exhibited good predictive performance with 
an AUC of 0.742 (95% CI: 0.678–0.806) in the 
training cohort and 0.758 (95% CI: 0.646–
0.870) in the validation cohort.

Development and performance of the ra-
diomics nomogram

Histologic grade, TVR, and RS were used 
to construct the early US-based radiomics 
nomogram (Figure  5), which showed excel-
lent discriminatory power with an AUC of 
0.836 (95% CI, 0.807–0.905) in the training 
cohort and 0.856 (95% CI, 0.749–0.923) in the 
validation cohort (Figures  6a and 6b). The 
radiomics nomogram outperformed both 
the clinico-ultrasonic model (AUC: 0.773, P < 
0.05) and the RS model (AUC values of 0.742, 

P < 0.05) in the training cohort (Table 3). The 
nomogram also performed well in the vali-
dation cohort (AUC: 0.856 vs. 0.770, 0.758; P 
< 0.05). The C-index value for predicting pCR 

was 0.85 in the training cohort and 0.81 in 
the validation cohort. Calibration curves for 
both cohorts showed good alignment with 
the ideal curve (Figures 6c and 6d), and the 

Figure 3. Grey-scale US images. (a, b) The three largest tumor dimensions in the transverse and longitudinal 
images before NAC. (c, d) The three largest tumor dimensions in the transverse and longitudinal images 
after two cycles of NAC. The patient completed neoadjuvant systemic therapy, and surgical pathology 
confirmed a pCR. (e, f) The three largest tumor dimensions in the transverse and longitudinal images before 
NAC. (g, h) The three largest tumor dimensions in the transverse and longitudinal images after two cycles of 
NAC. The patient completed neoadjuvant systemic therapy, and surgical pathology confirmed a non-pCR. 
US, ultrasound; NAC, neoadjuvant chemotherapy; pCR, pathologic complete response.

Figure 4. (a) Heatmap of selected radiomics features from the training cohort (GLSZM, grey level size zone 
matrix; NGTDM, neighboring gray tone difference matrix). (b) Comparison of Radscores between the pCR 
and non-pCR groups in the training and validation cohorts. (c) Features selected using LASSO regression. 
pCR, pathologic complete response; LASSO, least absolute shrinkage and selection operator.

a b

c

Table 2. Multiple logistic regression analysis of risk factors for pCR

Characteristics Training cohort (n = 230) Validation cohort (n = 98)

β Odds ratio (95% CI) P β Odds ratio (95% CI) P

Intercept −0.546 −0.022

Histologic grade

I–II 1 (ref ) 1 (ref )

III −1.050 0.350 (0.183 to 0.668) 0.001 −1.855 0.156 (0.059 to 0.411) <0.001

TVR

<80% 1 (ref ) 1 (ref )

≥80% 2.626 13.821 (6.195 to 30.837) < 0.001 1.318 3.734 (1.270 to 10.977) 0.017

pCR, pathologic complete response; CI, confidence interval; TVR, tumor volume reduction.
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Hosmer–Lemeshow test indicated no sig-
nificant differences (P = 0.470 and 0.623). 
Decision curve analysis (Figure  6e) demon-
strated that the early US-based radiomics 
nomogram enhanced the prediction of pCR 
in breast cancer across a wide range of risk 
threshold probabilities. 

Discussion
In this study, we developed and validat-

ed an early US-based radiomics nomogram 
that integrates clinical data, US features, and 
RS derived from grayscale US images. The 
nomogram yielded satisfactory predictions, 
with an AUC of 0.856 in the training cohort 
and 0.836 in the validation cohort, outper-
forming both the clinico-ultrasonic and RS 
models. 

Previous studies have shown that over-
estimating the extent of residual disease in-
volvement can lead to unnecessary surgical 
expansion, whereas underestimating the re-
sidual cancerous area may result in positive 
margins and tumor recurrence after NAC in 
TNBC.8,10,23,24 However, pathological findings 
from surgical specimens, considered the 
gold standard for evaluating NAC effective-
ness, are only available after completing che-
motherapy. Early prediction of NAC efficacy 
is therefore essential to allow appropriate 
therapy adjustments for potentially poor 
NAC responders. US, MRI, and PET have been 
investigated in several recent trials to track 
NAC efficacy, but US, being non-invasive and 
easily accessible, has an edge over other im-
aging modalities in predicting early tumor 
response.25 A recent study confirmed that 
combining US features with clinicopatholog-
ic factors can accurately predict pCR preop-
eratively in breast cancer.15,26 Therefore, we 
combined clinical prediction factors and US 
features to develop a clinico-ultrasonic mod-
el to predict pCR in patients with TNBC. 

Our findings demonstrated a strong 
correlation between histologic grade and 
pCR rate in tumors, consistent with recent 
studies.27,28 Jung et al.29 demonstrated that 
tumors with high histologic grade are asso-
ciated with improved pCR rates in patients 
with breast cancer due to their elevated mi-
totic index, supporting our findings. Ni et al.30 
showed that the changes in maximum tumor 
diameter after two cycles of NAC, four cycles 
of NAC, and six cycles of NAC were all inde-
pendent predictors of pCR (P = 0.017, 0.005 
and 0.009), though they did not evaluate TVR 
across the three largest tumor dimensions, 
which may be more accurate than predicting 
NAC efficacy from a single dimension. Adra-

da et al.12 reported that a reduction of 80% or 
more in tumor volume after two NAC cycles 
predicted pCR in patients with TNBC. Gu et 
al.31 also stated that the percentage reduc-
tion in tumor volume after four cycles was 
associated with early NAC response in breast 
cancer patients. 

In our study, the optimum cut-off point 
on the ROC curve was based on the maximal 
value of the Youden index, and we set the 
TVR cut-off point to 80%. In the training co-
hort, the pCR rate was 69.2% (36 of 52) in pa-
tients with TVR ≥80% and 25.8% (46 of 178) 

Figure 6. (a, b) ROC comparisons of the clinico-ultrasonic model, RS model, and radiomics nomogram in 
the training and validation cohorts. (c, d) Calibration curves of the radiomics nomogram in the training and 
validation cohorts. (e) Decision curve of the RS model, clinico-ultrasonic model, and radiomics nomogram. 
ROC, receiver operating characteristic; RS, radiomics signature; pCR, pathologic complete response.     

a

c

b

d

e

Figure 5. Development of the US-based radiomics nomogram for predicting pCR in TNBC. The nomogram 
integrates histologic grade, TVR, and RS. US, ultrasound; TNBC, triple-negative breast cancer; TVR, tumor 
volume reduction; RS, radiomics signature.



 

US-based radiomics nomogram to predict neoadjuvant chemotherapy efficacy in breast cancer • 

in patients with TVR <80%. Multiple logistic 
regression analysis confirmed TVR as an inde-
pendent risk factor (P < 0.001). Thus, clinical 
and US features can serve as excellent low-
cost predictors in estimating early response 
in patients with TNBC. No other clinico- 
ultrasonic factors related to pCR in TNBC 
were found in this study, possibly due to the 
low number of patients enrolled.

Radiomics, a computer-aided technolo-
gy, uses digital medical images to quantify 
tumor heterogeneity, converting those fea-
tures into a series of mathematical data.16,32 
Recent studies have shown that radiomics 
analysis can be used for breast cancer sub-
type differentiation, therapeutic decision 
making, and axillary lymph node metastasis 
prediction.33-36 Compared with MRI, US im-
ages are less expensive, simpler, and easier 
to obtain for preoperative pCR evaluation, 
offering substantial potential clinical and fi-
nancial advantages. In this study, the final RS 
calculation formula was constructed based 
on twelve selected radiomics features to 
predict pCR before surgery in patients with 
TNBC, revealing excellent predictive perfor-
mance with an AUC of 0.742 in the training 
cohort and 0.758 in the validation cohort.

The final twelve radiomics features in-
cluded one shape-based, four first-order 
statistical, and seven texture-based features. 
Among them, the three most valuable were 
the neighboring gray tone difference matrix 
(NGTDM) coarseness and first-order mean 
and energy. First-order mean and energy 
measured the frequency distribution of the 
pixel intensity for the zones.37 In our study, 
the mammary gland signal intensity cor-
related with the pCR rate among patients 
with TNBC. Higher mean and energy may be 
observed in TNBC non-pCR compared with 
pCR. The NGTDM coarseness is determined 
by the variations between voxels in adjacent 
image planes.38 Current research indicates bi-
ological differences between responsive and 

non-responsive tumors, as evidenced by the 
decreased NGTDM coarseness in pCR com-
pared with non-pCR. In addition, nine other 
features provided crucial insights into tumor 
physiology and the microenvironment of 
pCR, with its multiple tissue components.

Recent advances in radiomics nomo-
grams emphasize the prognostic value of 
tumor and axillary lymph node status as-
sessment following NAC, thereby informing 
treatment strategy decisions and avoiding 
unnecessary surgery.39 Consequently, to pro-
vide an accurate individualized prediction 
of pCR, we developed a clinically applicable 
nomogram that integrates clinical data, US 
features, and RS. Our early US-based radio-
mics nomogram demonstrated appropriate 
calibration and excellent discrimination. It 
outperformed the RS and clinic-ultrasonic 
models, exhibiting superior predictive per-
formance and net benefit in both the train-
ing and validation datasets. Therefore, the 
nomogram serves as a non-invasive preop-
erative predictive tool for pCR, helping clini-
cians identify patients with poor response to 
NAC and enabling consideration of alterna-
tive therapies for chemotherapy-insensitive 
patients with TNBC. These findings highlight 
the clinical value of the nomogram. 

However, several limitations of this study 
should be acknowledged. First, this was a 
retrospective, single-center study, and fu-
ture studies should involve larger sample 
sizes and multicenter data. Second, manual 
ROI segmentation is time-consuming; a fully 
automatic tool to encourage the clinical ap-
plication of a nomogram should be explored. 
Third, elastography and contrast-enhanced 
US examinations were not included, poten-
tially limiting lesion information and affect-
ing the accuracy of the clinico-ultrasonic 
model for predicting pCR in TNBC.40 Fourth, 
due to the exclusion criteria, patients with 
multiple cancers or non-mass lesions, and 
those who lacked pre-NAC or post-two-cy-

cle NAC US data were excluded, potentially 
resulting in selection bias. Future studies 
should address these limitations to further 
refine the current model.

In conclusion, we developed and validat-
ed an early US-based radiomics nomogram 
to predict the likelihood of pCR in patients 
with TNBC. This tool may assist clinicians in 
formulating personalized treatment and 
identifying patients with a high probability 
of achieving pCR.
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