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The integration of artificial intelligence (AI) into healthcare is no longer a futuristic con-
cept but a present-day reality, with radiology at the forefront of this technological wave. 
Although generative AI applications are now well established, a new paradigm is gain-

ing prominence. This commentary focuses on advanced AI systems often broadly referred to 
as AI agents, specifically those exhibiting highly agentic capabilities, which are beginning to 
be distinguished as agentic AI.1 An AI agent can be defined as a sophisticated system capa-
ble of autonomous, goal-directed reasoning, integrating planning, memory, tool usage, and 
feedback.

AI agents promise a higher degree of autonomy and adaptability, capable of independent 
operation, learning, and even collaboration within complex clinical settings, potentially with 
reduced need for direct human oversight.2 Although the theoretical and practical boundaries 
of AI agents and agentic AI remain under exploration in academic discourse, early evidence 
indicates their capacity to redefine healthcare delivery.3-5 For radiology, this could signify a 
shift toward an agentic era, where such intelligent systems are embedded across the imag-
ing workflow, automating protocol selection, interpreting studies, generating reports, and 
interacting with radiologists to support complex diagnostic decisions.5 This commentary with 
brief literature review explores AI agents within the radiological context, outlines their evo-
lutionary path from prior AI systems, and explores their potential applications and inherent 
challenges, offering a conceptual overview rather than an exhaustive technical review.

 Distinguishing artificial intelligence agents

Understanding the leap to highly agentic AI systems requires examining the recent evolu-
tion of AI (Table 1 and Figure 1), particularly systems built on  large language models (LLMs). 
Initially, based on their training data, foundational LLMs offered impressive text generation 
and comprehension. The next iteration saw these models augmented, equipped with tools 
such as retrieval augmented generation or connections to external databases and software, 
allowing them to access current information or perform specific tasks beyond their core train-
ing.6 However, these prior approaches often still rely on human direction or supervision for 
complex operations. 

AI agents, particularly those exhibiting the agentic characteristics central to this discus-
sion, represent the next step.2,5,7 An AI agent is not just a model; it is a system orchestrated 
by a core reasoning engine (often an LLM) that can autonomously decompose a high-level 
goal into smaller, executable steps. It can select and use different tools (e.g., segmentation 
algorithms, data retrieval functions), store key information in its memory, and adapt its plan 
based on intermediate results. This ability to self-direct and adapt significantly distinguishes 
them from their predecessors.

To illustrate this with a neuroradiological example, the workup for a patient presenting 
with acute stroke symptoms can be considered. An early vision-language model (VLM) might 
be given a single image and asked to describe it [e.g., “non-contrast computed tomography 
(CT) shows a hyperdense left middle cerebral artery (MCA) sign”]. An augmented LLM, when 
prompted by a radiologist, could retrieve the text from the non-contrast CT and CT angiogra-
phy reports to help draft a summary. In contrast, an AI agent, given the high-level goal “Evalu-
ate for acute stroke for patient X,” could autonomously execute a complex and time-sensitive 
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plan as follows: (i) access the initial non-con-
trast head CT and activate a tool to calculate 

an Alberta Stroke Program Early CT score; 
(ii) open the subsequent CT angiogram to 

identify the vessel occlusion location; (iii) run 
a perfusion imaging tool to calculate the is-
chemic core and penumbra volumes; (iv) syn-
thesize these quantitative findings with clini-
cal guidelines; and (v) generate a preliminary 
report summarizing that the patient has a left 
M1 occlusion with a small core and large pe-
numbra, flagging the case for immediate re-
view as a potential thrombectomy candidate. 
This example demonstrates a transition from 
a reactive tool to a proactive, autonomous 
assistant orchestrating a critical and highly 
complex diagnostic workflow.

Potential applications in radiology

The advent of AI agents heralds a signif-
icant transformation in radiological prac-
tice, offering pathways to optimize complex 
clinical workflows and enhance diagnostic 
capabilities.5,8 Figure 2 presents a simplified 
AI agent-based workflow example in radiol-
ogy, demonstrating how such agents could 
orchestrate various clinical tasks while leav-
ing final decision-making in the hands of ra-
diologists. Below, we outline a few key areas 
where AI agents may be integrated into radi-
ology practice.Figure 1. Oversimplified conceptual evolution of artificial intelligence (AI) from traditional machine 

learning models to autonomous AI agents. The placement of vision-language models and augmented 
large language models is illustrative, and their development may overlap. ML, machine learning; LLM, large 
language model; VLM, vision-language model; ALLM, augmented large language model.

Table 1. Conceptual progression of artificial intelligence systems toward agentic intelligence

Type Key characteristics Key limitations Potential radiological capabilities

Traditional ML
Algorithm-based (e.g., SVM); relies 

on structured data and handcrafted 
feature engineering

Limited scalability for complex data, 
which are less adaptable; often 

requires domain expertise for feature 
selection

Basic image analysis; statistical analysis 
of patient data; risk prediction from 

structured data

Deep learning
Neural network-based; learns features 

automatically from large datasets 
(images, text, etc.)

Data-hungry; computationally 
intensive; can be a “black box” 

(interpretability challenges)

Advanced image segmentation, 
classification, anomaly detection in 

medical images (e.g., lesion detection)

Foundational LLMs
Pretrained on large-scale text 

data; operate on fixed knowledge; 
generate coherent text

Primarily text-based; no external tool 
use; no real-time data access; lack 

dynamic planning or memory

Summarizing findings from text reports; 
assisting with unstructured textual 

reports; drafting initial report sections

Augmented LLMs 

Foundational (text-based) LLMs 
enhanced with tool use (e.g., RAG, 

calculators, APIs) via orchestration or 
plug-ins

Still primarily text-centric if not 
combined with a VLM; autonomy 

limited by tool capabilities and 
prompting

Retrieving priors (textual medical 
records); assisting protocoling (via text-
based queries); citing literature; using 

calculators for quantitative data

VLMs 

Pretrained on large-scale image-text 
data; understand and generate text 
related to visual inputs; multimodal 

outputs

Operate on fixed knowledge (unless 
augmented); may lack sophisticated 
reasoning beyond pattern matching 

without further integration

Basic image captioning; visual question 
answering (about images); identifying 

findings in images based on textual 
prompts

Multimodal ALLMs

Integrates VLM capabilities with 
ALLM tool use; processes and reasons 
over multiple modalities (text, image, 

etc.) using external tools/data

Increased complexity in orchestration; 
potential for compounded errors from 
different modules; resource-intensive

Interpreting medical images using vision 
tools combined with RAG; cross-modal 

report generation; advanced visual 
question answering with external 

knowledge

Artificial intelligence agents

Autonomous systems integrating 
LLMs/VLMs/ALLMs, tool use, memory, 
planning, and reinforcement learning 

or feedback

Complex to govern; opaque 
reasoning; require robust oversight 

for safety, ethical considerations, and 
accountability

Automated triage; protocol selection; 
complex segmentation and detection; 
structured report generation; dynamic 

question answering; multimodal 
synthesis; decision support

ML, machine learning; SVM, support vector machine; VLM, vision-language model; RAG, retrieval-augmented generation; API, application programming interface; LLM, large 
language model; ALLM, augmented large language model.
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Automation of administrative and prepara-
tory tasks

One of the most immediate impacts could 
be the automation of laborious preparatory 
and administrative duties.5 Imagine intelli-
gent systems that efficiently triage imaging 
studies based on urgency, recommend op-
timal imaging protocols, or collate pertinent 
patient histories from disparate electronic 
health records. Such automation would lib-
erate radiologists from these routine tasks, 
allowing them to channel their cognitive ex-
pertise toward more intricate image analysis 
and critical diagnostic decision-making. 

Image analysis and structured reporting

More sophisticated AI agents, especially 
when embedded within existing radiology 
platforms, could further amplify their val-
ue by concurrently analyzing imaging data, 
contextualizing findings against current 
medical literature, and even drafting prelimi-
nary structured reports, thereby cultivating a 
more efficient and accurate diagnostic pipe-
line.3 

An illustrative advancement in this do-
main is RadGPT, a specialized vision-language 
AI agent designed for generating compre-
hensive reports from abdominal CT scans.9 

This system reportedly not only segments tu-
mors and adjacent anatomical structures but 
also produces both structured and narrative 
summaries, detailing characteristics such as 

tumor dimensions, morphology, location, at-
tenuation, volume, and its relationship with 
nearby vasculature and organs. The system’s 
reported high sensitivity and specificity, par-
ticularly for detecting small tumors, under-
scores its potential. The RadGPT system em-
ploys deterministic algorithms to translate 
voxel-level annotations into structured data, 
which are then processed by LLMs to create 
narrative reports, potentially enriching radi-
ologists’ reports with precise details, such as 
tumor volume and attenuation, that might 
otherwise be overlooked.

Multimodal integration for diagnostic sup-
port

Synergy between multimodal LLMs and 
AI agents can be harnessed to integrate di-
verse radiological and clinical data streams 
for enhanced diagnostic support.5 These 
agents could interface with picture archiv-
ing and communication systems (PACS) to 
automate quality assurance processes, man-
age data transfers, execute image analysis 
algorithms, and flag potential abnormali-
ties for radiologist review. Operating in the 
background, such agents can continuously 
process imaging data, generate initial find-
ings, and propose differential diagnoses. 
As complementary or embedded tools (i.e., 
multimodal LLM + agents), VLMs further em-
power radiologists by facilitating structured 
report generation, augmenting the review 
process, enabling visual search capabilities, 

and summarizing extensive patient imaging 
histories. For example, systems such as LLa-
VA-Med, specifically trained on biomedical 
datasets, have demonstrated proficiency in 
image interpretation, clinical reporting, and 
responding to visual queries.10

Dynamic task execution with external tools

AI agents that can dynamically plan and 
execute tasks using external tools show 
promise. For example, VoxelPrompt has re-
portedly surpassed task-specific models 
in complex tasks such as image segmen-
tation and pathology characterization.11 
VoxelPrompt functions as an agent-driven 
vision-language framework. It receives a nat-
ural language prompt and three-dimension-
al medical volumes, and its core LLM-based 
controller (or agent) iteratively predicts the 
executable instructions. These instructions 
are not simple commands; they can involve 
interacting with dedicated vision networks, 
calling a predefined library of functions, and 
interpreting intermediate results.

 Potential challenges and risks

Despite the considerable promise of AI 
agents in healthcare, their widespread adop-
tion, particularly in a critical field such as ra-
diology, is contingent upon addressing sig-
nificant inherent challenges.2,5 

The development and enforcement of 
robust governance structures, alongside the 
evolution of legal and ethical guidelines, are 
paramount to nurturing innovation while 
safeguarding against potential pitfalls relat-
ed to algorithmic bias, accountability, and 
the establishment of trust.2 AI agents can 
inadvertently amplify underlying model bi-
ases, introducing safety risks.12,13 Addressing 
these risks effectively remains a formidable 
task in the healthcare domain, especially 
as regulatory frameworks often struggle to 
keep pace with rapid technological advance-
ments. Moreover, the continuous learning 
capabilities of some agentic AI systems fur-
ther complicate regulatory oversight, as their 
evolving behavior can challenge static ap-
proval processes, necessitating more dynam-
ic and adaptive regulatory strategies.

Transparency in AI agent operations is 
crucial for gaining clinician trust and facili-
tating smoother implementation, particu-
larly given the understandable reluctance to 
adopt black-box technologies.14 Therefore, 
designing AI agents with an emphasis on ex-
plainability, mechanisms to address biases, 
and robust security in their decision-mak-
ing pathways is essential, especially in high-

Figure 2. Example of an oversimplified artificial intelligence (AI) agent-enabled radiology workflow, where 
the agent acts as a background orchestrator, performing several tasks and escalating ambiguous cases for 
the radiologist’s review. PACS, picture archiving and communication system; ML, machine learning; RIS, 
radiology information system.
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stake and trust-sensitive environments such 
as medical diagnostics. 

Integration of highly autonomous agents 
introduces significant human–AI interaction 
risks.15,16 Automation bias, the tendency for 
humans to over-accept suggestions from 
automated systems, could lead to missed 
diagnoses if radiologists become less vigi-
lant. Similarly, over-reliance on AI-generated 
outputs might deskill practitioners over time, 
diminishing their ability to interpret complex 
cases without AI assistance. Mitigating these 
risks requires not only robust AI validation 
but also targeted training for clinicians on the 
appropriate use and limitations of AI agents, 
leading to a culture of critical engagement 
rather than passive acceptance.

The practical deployment of AI agents in 
clinical settings also presents certain hurdles, 
particularly concerning security and patient 
privacy.17 These agents are often envisioned 
to require access to sensitive patient data 
and possess the capability to execute actions 
autonomously. This, coupled with their reli-
ance on natural language communication, 
can introduce new security vulnerabilities. 
Ensuring secure memory management is vi-
tal to counter potential threats, including the 
risk of reintroducing corrupted or poisoned 
data during information retrieval process-
es.7 Implementing rigorous auditing of tool 
usage has been suggested to prevent unau-
thorized actions and data breaches, although 
this may result in substantial computational 
costs.7,18 There is also a need for universally 
accepted safety evaluation benchmarks and 
consensus on design standards across the AI 
agent ecosystem.

From an operational standpoint, inte-
grating these technological innovations into 
established daily clinical workflows remains 
a significant barrier.5 Technical difficulties 
include a dependency on high-quality, com-
prehensively labeled datasets, which can 
be particularly scarce for specialized or rare 
medical conditions.6 Furthermore, system in-
tegration presents complexities, as AI agents 
must interoperate flawlessly with existing 
heterogeneous hospital infrastructures, such 
as PACS and electronic health records, each 
often possessing distinct standards in terms 
of data and management.3 Finally, the com-
putational resources required to deploy and 
maintain powerful deep learning systems for 
real-time performance at scale, especially in 
resource-constrained remote or edge com-
puting scenarios, can pose a significant lim-
itation.19

In conclusion, AI agents represent a signifi-
cant evolutionary step in AI, holding substan-
tial potential to elevate diagnostic and deci-
sion support, streamline workflow efficiency, 
and ultimately improve patient care in radiol-
ogy. Their inherent capacity for autonomous, 
goal-oriented behavior, coupled with their 
ability to synthesize diverse data types and 
utilize external tools, sets them apart from the 
earlier generations of AI systems. However, 
the journey toward their widespread and safe 
implementation is paved with challenges, 
particularly concerning transparency, algo-
rithmic bias, human–AI interaction risks (e.g., 
automation bias), data security, and system 
interoperability. Effectively navigating these 
obstacles will necessitate robust governance 
frameworks, collaborative interdisciplinary 
research, and flexible and adaptive regulatory 
approaches. Although the field of AI agents 
in radiology is still in its nascent stages, their 
integration into radiological practice seems 
inevitable, with profound implications for 
both the delivery of clinical care and the opti-
mization of operational processes in the years 
to come. 
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