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ABSTRACT

In patients with cancer, spontaneous renal bleeding can stem from a range of underlying factors,
necessitating precise diagnostic tools for effective patient management. Benign and malignant re-
nal tumors are among the primary culprits, with angiomyolipomas and renal cell carcinomas being
the most common among them. Vascular anomalies, infections, ureteral obstructions, and coagu-
lation disorders can also contribute to renal-related bleeding. Cross-sectional imaging techniques,
particularly ultrasound and computed tomography (CT), play pivotal roles in the initial detection
of renal bleeding. Magnetic resonance imaging and CT are preferred for follow-up evaluations and
aid in detecting underlying enhancing masses. IV contrast-enhanced ultrasound can provide ad-
ditional information for active bleeding detection and differentiation. This review article explores
specific disorders associated with or resembling spontaneous acute renal bleeding in patients with
renal tumors; it focuses on the significance of advanced imaging techniques in accurately identify-
ing and characterizing renal bleeding in these individuals. It also provides insights into the clinical
presentations, imaging findings, and treatment options for various causes of renal bleeding, aiming
to enhance the understanding, diagnosis, and management of the issue.

KEYWORDS
Renal bleeding, renal cell carcinoma, angiomyolipoma, diagnosis, imaging, interventions

leeding can be a cause of substantial morbidity in patients with cancer; approximately

10% of individuals diagnosed with cancer experience bleeding episodes."? Furthermore,

high bleeding rates are frequently observed in patients with advanced-stage cancer and
those undergoing anticoagulant therapy. These factors underscore the need for vigilant mon-
itoring and tailored management approaches to address the risk of bleeding in this patient
population.?

A diverse range of conditions can lead to spontaneous, non-traumatic, and acute renal
bleeding in patients with benign and malignant tumors, highlighting the need for precise
diagnostic tools to optimize patient management. The primary causes of spontaneous renal
bleeding include benign and malignant kidney tumors, with angiomyolipomas (AMLs) and
renal cell carcinomas (RCCs) being the most common among them.** In addition to primary
renal tumors, vascular abnormalities affecting the kidneys, infections, ureteral obstructions,
and coagulation disorders can also contribute to renal-related bleeding in patients with can-
cer. Additionally, certain neoplastic conditions can closely mimic renal bleeding.** Cross-sec-
tional imaging techniques, including computed tomography (CT), magnetic resonance im-
aging (MRI), and ultrasound, are indispensable in evaluating patients with renal bleeding.
They enable the detection of renal bleeding and the identification of its underlying causes.®®
Interventional radiologists play a vital role in managing patients with active and substantial
bleeding.?

This paper explores specific disorders associated with or resembling spontaneous acute
renal bleeding in patients with cancer; it focuses on the crucial role of advanced imaging
techniques in accurately identifying and characterizing renal bleeding in these individuals.? It
also provides insights into the clinical presentations, imaging findings, and treatment options
for various causes of renal bleeding, aiming to enhance the understanding, diagnosis, and
management of the issue.

You may cite this article as: Singer ED, Karbasian N, Katz DS, et al. Renal bleeding: imaging and interventions in patients with tumors.
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Clinical presentations of renal bleeding in
patients with cancer

Patients with cancer and renal bleeding
vary widely in their clinical presentations;
some may be asymptomatic, and others may
have potentially life-threatening symptoms.
Symptoms may include flank pain, macro-
scopic hematuria, and a palpable abdominal
mass. Flank pain can vary in intensity and na-
ture due to the progressive enlargement of
a hematoma due to ongoing extravasation.
Potentially severe complications include
hemorrhagic shock and acute kidney inju-
ry, manifesting as tachycardia, hypotension,
pallor, altered mental status, and decreased
urine output.’®™

In patients with spontaneous renal bleed-
ing, extrarenal accumulations of fluid can
lead to extrinsic compression of the kidney.
This compression, termed Page kidney, may
elicit systemic hypertension.’

Therole ofimaging in renal bleeding detec-
tion and follow-up

Ultrasound and CT are the main imaging
modalities used for the initial detection of
renal bleeding.? Moreover, CT and MRI are
the preferred imaging modalities for the
follow-up of patients with renal bleeding.
Unenhanced CT is employed to confirm that
renal bleeding has resolved. Pre- and post-
contrast CT and MRI facilitate the detection
of an underlying enhancing mass, which is
often present in many patients.3 MRl is an ex-
cellent modality for renal bleeding follow-up
because of its high contrast resolution and
ability to assist in tissue characterization
without ionizing radiation.? However, it has
limitations: longer scanning times and limit-
ed accessibility compared with those of oth-

* There are numerous causes of spontaneous
renal bleeding; tumors, both benign and
malignant, vascular malformations, infec-
tion, and coagulopathy are common etiol-
ogies.

*+ Utilizing the most appropriate diagnostic
tools to determine the cause is critical, and
ultrasound and computed tomography (CT)
are most often used in the acute setting,
whereas CT and magnetic resonance imag-
ing play an important role in follow-up.

* Catheter angiography plays an important
role in the management of renal bleeding.

* The many causes of bleeding are discussed
with examples; pitfalls, including mimickers
of bleeding, are also presented.

er modalities and higher prices compared
with CT. Follow-up imaging at 2-3 month
intervals to document the resolution of the
hemorrhage is of utmost importance in pa-
tients with bleeding whose underlying cause
remains unclear.? If subsequent scans do not
reveal the presence of an underlying mass,
no additional measures are required, assum-
ing the hemorrhage continues to diminish in
size and a thorough assessment of the un-
derlying renal structure is conducted.? Table
1 summarizes the appearance of renal bleed-
ing on various imaging modalities according
to the phase of the bleeding.>'¢"°

Ultrasound

Ultrasound is a valuable imaging modal-
ity for assessing hematomas with distinct
characteristics observed at different stages
of development.”” An acute hematoma ini-
tially appears solid and hyperechoic, or het-
erogeneous on gray-scale ultrasound, and
avascular on color Doppler imaging (Figure
1)." As the hematoma progresses, it changes
its echotexture and becomes more hetero-
geneous. Occasionally, it has a central region
of decreased echogenicity or a cystic-like
appearance. In the chronic phase, peripheral
calcifications may develop within the hema-
toma."”

Intravenous (IV) contrast-enhanced ul-
trasound can potentially depict active renal
bleeding.'® Moreover, when a substantial re-
nal mass or a conspicuous vascular anomaly
is absent, ultrasonography might not suffice
to ascertain the underlying cause of bleed-
ing in most patients with spontaneous renal
bleeding. The use of contrast-enhanced ul-
trasound provides supplementary informa-
tion beyond that which conventional ultra-
sound methodologies can offer.'820-26

Computed tomography

On non-contrast CT, acute bleeding has
an attenuation value of 30-45 Hounsfield
units (HU),>"®and this value increases to 60—
80 HU after several hours, depending on the
concentration of hemoglobin.>'¢ In the sub-
acute phase (several days to several weeks),
the attenuation of the bleeding decreases
as the blood clot is resorbed, resulting in the
formation of a seroma with an attenuation
value of approximately 30 HU or less.>'¢ Cal-
cification may be visible in cases of chronic
hematomas, defined as those present for
more than 1-2 months. If an IV contrast-en-
hanced CT is performed during acute bleed-
ing, active contrast extravasation from the
underlying bleeding vessel may be localized
in the arterial phase of the CT.>' CT can also
help differentiate between extravasations

Table 1. The appearance of renal bleeding by imaging modality and phase

Imaging Appearance in the acute phase Appearance in the subacute and chronic
modality phases
Solid and echogenic appearance Appearance is stable or reduced in size
. H hoic fluid collecti
Multi-lamellated, whorled appearance 'ypoec .OIC Ui el Eaians Elsie
liquefaction
. . Formation of retractile clots/angular
Anechoic cystic areas .
margins
Ultrasound

Surrounding soft-tissue edema

Normally, the attenuation value of the
bleeding would be 30-45 HU, similar

to the blood pool’s attenuation
Non-contrast CT

An increase in size may simulate a soft-
tissue tumor

Well-defined margin, distinct capsule

Hypoechoic or anechoic seroma with
posterior acoustic enhancement

Bleeding attenuation decreases due

to clot lysis and progressive seroma
formation, measuring approx. 30 HU or
less

MRI

Bleeding typically measures 60-80 HU
during the hyperacute phase, which
lasts a few hours

Hyperacute blood: T1 isointense, T2
hypointense

Acute blood: T1 hypointense/
isointense, T2 hypointense

Chronic hematomas can calcify

Early subacute (2-7 days): T1
hyperintense, T2 hypointense

Late subacute (7-14 days): T1
hyperintense, T2 hyperintense

Chronic: peripherally low T1 and T2
signals, central T1 isointense and T2
hyperintense

CT, computed tomography; MRI, magnetic resonance imaging; HU, Hounsfield units.
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and pseudoaneurysms. Active extravasation
manifests as an ill-defined area of extralu-
minal contrast. During the arterial phase, it
appears isointense to the blood pool. Subse-
quently, it persists during the portal venous
phase and typically enlarges progressively in
the delayed phase.”” In contrast, a pseudo-
aneurysm is characterized by a well-defined,
rounded mass with an internal enhancement
that matches the pattern observed in the
aorta on corticomedullary phase images.®®

Magnetic resonance imaging

The appearance of bleeding on MRI
changes depending on the chronicity of
the bleeding and the breakdown of the he-
moglobin over time (Figure 2)."° In the early
stage, compared with the surrounding tis-
sues, the bleeding appears isointense on
T1-weighted images and isointense to hy-
perintense on T2-weighted images. This is
attributed to the diamagnetic effect of intra-

LONG LEFT KIDNEY

cellular oxyhemoglobin.' In the acute phase,
which usually occurs within the first 2 days,
hemoglobin breaks down into intracellular
deoxyhemoglobin, causing a decrease in the
signal intensity on both T1- and T2-weight-
ed images. In the early subacute phase (4-7
days), hemoglobin breakdown leads to the
formation of intracellular methemoglobin,
which has a paramagnetic effect that caus-
es a hyperintense signal on T1 images and
a hypointense signal on T2 images.” In the
late subacute phase (1-4 weeks), the con-
tinued breakdown of hemoglobin forms ex-
tracellular methemoglobin, contributing to
a hyperintense signal on both T1 and T2 im-
ages. During the chronic stage, the bleeding
demonstrates a peripheral area of low-signal
intensity on both T1- and T2-weighted imag-
es, which can be attributed to the accumu-
lation of intracellular hemosiderin, and the
central region displays T2 hyperintensity and
T1 isointensity.”

Figure 1. A lentiform, mass-like area along the lateral margin of the left kidney is seen on color Doppler
ultrasound (a) and axial non-contrast CT (b), consistent with an acute subcapsular hematoma (white arrows).
A tiny focus of gas along the posterior margin is likely iatrogenic (black arrow). CT, computed tomography.

A hemorrhage can be detected and dif-
ferentiated from the surrounding tissues
using susceptibility-weighted imaging (SWI),
a sequence combining the magnitude and
phase data of MRI. It is sensitive to the detec-
tion of blood products, including microhem-
orrhages.?*3?

Owing to its sensitivity and ability to
depict changes in hemoglobin types as a
hematoma ages, SWI can be very useful in
identifying hemorrhages.® Its sensitivity and
accuracy can surpass those of conventional
imaging methods routinely used to detect
bleeding; it can depict and characterize hem-
orrhage in clear cell RCCs, regardless of the
tumor grade or bleeding pattern.>* However,
SWI images can be affected by air-caused
susceptibility artifacts within the gastrointes-
tinal tract, leading to imaging patterns that
resemble bleeding and potentially compli-
cating the interpretation of images.>*

Catheter angiography

Superselective renovascular catheteriza-
tion and embolization play crucial roles in
the diagnosis and treatment of renal bleed-
ing and, potentially, the avoidance of radical
surgery (Figure 3). Interventional radiology
management strategies, particularly the coil-
ing or embolization of the bleeding source,
are used for treatment. Renal arteries are ter-
minal vessels that lack substantial intrarenal
collateral circulation. Hypervascular renal tu-
mors, particularly RCCs, make use of collateral
circulation from outside the kidneys. Hence,
the preferred embolic agents are those that
can block small vessels, including N-butyl cy-
anoacrylate glue, ethanol, polyvinyl alcohol,
or embospheres, as well as agents capable of
occluding larger vessels (e.g., coils).>> The po-
tential complications of endovascular treat-

Figure 2. Axial (a) and coronal (b) contrast-enhanced CT status scans obtained after the placement of a right nephroureteral stent in a patient with urothelial
carcinoma (white arrows). The high-attenuation hemorrhage within the renal pelvis is consistent with hemorrhage (black arrow). (¢, d) Non-contrast T1 (c) and T2 (d)
MRIimages of the right kidney demonstrate layering of late subacute blood products (T1 hyperintense, T2 hyperintense) (white arrows). CT, computed tomography;

MRI, magnetic resonance imaging.
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Figure 3. (a) A right upper pole renal cell carcinoma (white arrows) demonstrates abnormal tortuous intra-tumoral vessels on angiography (b) during pre-ablation
renal artery embolization (b, c). Post-ablation contrast-enhanced CT (d) demonstrates a hypoattenuating ablation zone without residual enhancement (white
circle). A small amount of posterior perirenal hemorrhage is present (black arrows). CT, computed tomography.

ment include infarction, exacerbation of hy-
pertension, unintended embolization (e.g.,
coil migration to the systemic circulation),
and stent graft thrombosis.>®

Primary renal neoplasms

Renal cell carcinoma

RCC can cause spontaneous bleeding
within the renal parenchyma; it is the most
common cause of spontaneous bleeding due
to a primary malignant renal neoplasm (Fig-
ures 4, 5).3*¢ Parenchymal bleeding is more
frequently observed in the clear cell subtype
of RCC, which is the most prevalent subtype.?
CT and MRI are useful in diagnosing RCC, but
they can pose challenges in identifying the
tumor if it is small and obscured by bleeding.
In such cases, subtraction imaging may aid in
identifying the underlying tumor.® However,
it can cause several problems: misregistra-
tion artifacts related to patient motion and
a variation in the technical factors on the
unenhanced and enhanced sequences.?” An
alternative strategy to identify small tumors
presenting with bleeding and potential-
ly obscured on the initial scans is to repeat
imaging after the hematoma shrinks (6-8
weeks). Table 2 summarizes the differential
diagnoses of spontaneous renal bleeding in
patients with cancer and includes helpful ra-
diological features for proper differentiation.

For patients presenting with bleeding
in association with RCC, a patient’s clinical
condition dictates the treatment. Hemody-
namically stable patients are treated con-
servatively and monitored closely. However,
transcatheter arterial embolization (TAE) may
be needed to treat active bleeding or prevent
it from increasing by cutting off the tumor’s
blood supply. The disease stage must be

Table 2. Differential diagnoses and the main radiological features of renal bleeding in

patients with cancer

Diagnosis

Radiological features

Renal cell carcinoma

Trauma/ iatrogenic bleeding
(e.g., after renal biopsy,
nephrostomy placement)

Vascular causes (e.g.,
polyarteritis nodosa)

Angiomyolipoma

Heterogeneous, solid renal mass
Enhancement with contrast on CT or MRI scans

Possible bleeding (high-density areas on non-contrast CT scans,
hyperintense areas on T1-weighted MRI scans)

Invasion into the renal vein or inferior vena cava in advanced cases
Perirenal hematoma (fluid collection around the kidney)
Laceration or contusion of the kidney parenchyma

Active extravasation (contrast extravasation on CT scans)

Urinoma or urinary leakage (with collecting system injury)

Multiple, small, round, wedge-shaped, or irregular hypodense foci
on CT scans

Enhancement of peripheral rims in the arterial phase

Rosary sign or string-of-beads appearance on renal artery due to
microaneurysms on angiography

Well-circumscribed, hyperechoic mass on ultrasound
Fat-containing mass with negative HU on CT scans

T1 and T2 are hyperintense signals on MRI scans (without fat
suppression)

Presence of bleeding (high-density areas on non-contrast CT scans
and hyperintense areas on T1-weighted MRI, with fat suppression
to differentiate between the bleeding and fat content)

No specific features for renal bleeding, but bleeding may occur
due to infection or obstruction

Multiple, bilateral, low-attenuation renal masses on CT scans

Homogeneous or heterogeneous enhancement with contrast

Bleeding may be present with aggressive subtypes or as a
complication

CT, computed tomography; MRI, magnetic resonance imaging; HU, Hounsfield units.

considered when choosing a definitive treat-
ment for RCC. Percutaneous ablation, partial
nephrectomy, and radical nephrectomy are
alternative therapeutic approaches that can
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be employed, depending on the tumor stage
and location and the general health of the
patient, among other factors.®®
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Angiomyelolipoma

Various studies have shown that the
prevalence of renal AMLs as a causative fac-
tor for spontaneous renal bleeding ranges
from 30% to 35%.3* Typically affecting the
kidneys, AMLs are a condition in which mes-
enchymal tumors characterized by variable
amounts of mature smooth muscle, adipose
tissue, and abnormal blood vessels form.*
It is assumed that AMLs originate from peri-
vascular epithelioid cells, which are unique
cells found close to blood vessels.** Classic
triphasic and monotypic epithelioid AMLs
are the two primary subtypes of the disease,
and these subgroups have distinct biological
and imaging properties. Up to 70% of clas-
sic AMLs appear sporadically, and 30%-50%
are linked to tuberous sclerosis, according to
older literature. However, the vast majority of
AMLs are now found incidentally on imaging
examinations performed for other reasons
and are small or relatively small.® Approxi-
mately 5% of all renal AMLs are epithelioid
and exhibit aggressive behavior that predis-
poses patients to recurrence, metastasis, and
death.”

There is a risk of spontaneous renal bleed-
ing in patients with renal AMLs, regardless of
the origin or histological subtype, and this is
particularly true for patients with medium
or large-sized AMLs (greater than 4 cm).84244
On CT imaging, classic AMLs typically appear
as heterogeneous masses characterized by
a mixture of macroscopic fat, hypervascular
soft-tissue components, and intratumoral
aneurysms.* In cases of spontaneous renal
bleeding, the CT appearance of AMLs can
be altered due to intratumoral and perire-
nal bleeding. MRI shows high signal inten-
sity on T1-weighted images and signal loss
on fat-saturated sequences, indicating the
presence of macroscopic fat within the re-
nal AMLs. On imaging, epithelioid AMLs are
similar to other solid renal masses because
they often lack macroscopic fat and appear
as solid, soft-tissue masses. Therefore, they
cannot be reliably distinguished from other
renal tumors by imaging alone.®

Up to 25% of renal AMLs have the poten-
tial to rupture spontaneously, leading to per-
inephric bleeding.’ The presence of abnor-
mal arteries in AMLs -arteries characterized

by a reduced elastin content- increases their
susceptibility to aneurysm development.?
The likelihood of rupture, potentially result-
ing in life-threatening bleeding, increases
with the size of tumoral aneurysms.* The
frequency of tumor rupture and intratumoral
bleeding is substantially influenced by the
size of the tumor and the intratumoral an-
eurysms.2 Concerning tumor-related bleed-
ing in AMLs, a larger tumor size (>4 cm) is
directly correlated with a larger diameter
of intratumoral aneurysms (>5 mm).* CT
and/or MRI imaging modalities can depict
the presence of the tumor associated with
spontaneous renal bleeding produced by
ruptured AMLs. However, it is important to
note that the imaging appearance of the
tumor may be modified due to bleeding.?
Furthermore, CT findings can aid in differen-
tiating AMLs from liposarcoma, because the
scans of AMLs are more likely to show small
dimensions, lack of renal tissue, multiple ves-
sels, aneurysmal dilation, vascular pedicle,
bleeding, encapsulated periphery, and fatty
lesions.*® Kis et al.* have suggested the use
of diffusion-weighted imaging and apparent
diffusion coefficient (ADC) values for renal

Figure 4. An axial MRI at the level of the right kidney (a-c) demonstrates a heterogeneous mass (white circle) with regions showing a non-enhancing, mildly
T1 hyperintense signal, suggesting hemorrhage/necrosis. The findings are consistent with the patient’s known renal cell carcinoma. An associated subacute
subcapsular hematoma (black arrows) compresses the renal parenchyma. (d) An axial contrast-enhanced CT of the right kidney demonstrates the mass (white
circle) and associated subcapsular hematoma (black arrow). MRI, magnetic resonance imaging; CT, computed tomography.

Figure 5. Axial CT images (a, b) demonstrate bilateral renal cell carcinomas with invasion of the renal hila. Multiple bilateral dilated vessels and aneurysms are
present in the renal hilar regions (black arrows). Renal cell carcinoma is commonly associated with a variety of vascular anomalies, including renal artery aneurysms

and arteriovenous fistulas. CT, computed tomography.
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mass classification. They found that benign
lesions demonstrate higher ADC values than
the adjacent normal renal parenchyma; they
also discovered that the ADC of malignant
tumors is lower than that of the adjacent
parenchyma. In their study, the ADC values
were lowest in AMLs and oncocytomas.* Fig-
ures 6 and 7 illustrate bleeding secondary to
AMLs.

TAE is the primary treatment modality
for patients experiencing acute bleeding; it
effectively achieves hemostasis in approxi-
mately 96% of cases, preventing emergency
surgery.>® To minimize bleeding events, pro-
phylactic TAE reduces the size and vascular-
ity of large AMLs." Prophylactic, selective
TAE shows greater tumor reduction benefits
in AMLs with a diameter of less than 7 cm,
according to Hongyo et al.>*> Angiographic
observations (e.g., of vascularity and intra-
tumoral aneurysms) allow the classification
of AMLs into categories with minimal, mod-
erate, and marked vascularity. Such classifi-
cations are valuable guides for determining

the appropriate prophylactic treatment.*’ In
cases in which TAE fails to achieve the de-
sired outcome, nephron-sparing surgery is
typically performed. However, when more
invasive interventions are warranted (e.g., in
patients with a suspected malignancy or un-
controlled bleeding in an emergency scenar-
io), total nephrectomy may be a treatment
option for large AMLs.>

Renovascular conditions in patients with
cancer

Renal vein thrombosis

Renal vein thrombosis occurs when the
primary renal veins or their branches become
blocked owing to thrombosis or embolism.
In rare instances, it can predispose a patient
to spontaneous renal bleeding.>* Neoplasms,
primarily RCCs, preferentially infiltrate the
renal vein, especially when they become
large and more locally aggressive, resulting
in renal vein thrombosis. In cases in which
the tumor is significantly large, it can extend

into the inferior vena cava. Additionally, ex-
trinsic compression resulting from the mass
effect of the tumor can produce a prothrom-
botic milieu without direct vein invasion. In
patients with renal vein thrombosis, renal
bleeding likely results from renal parenchy-
mal edema and necrosis, potentially leading
to renal capsular rupture.’*>>

On cross-sectional imaging, a patient
with renal vein thrombosis typically presents
with an enlarged ipsilateral kidney and ede-
ma in the renal sinus and perirenal space.*
A complete or partial renal vein thrombosis
can be identified by the absence or reduc-
tion of renal parenchymal enhancement on
nephrographic-phase images. On IV con-
trast-enhanced CT and MRI, the thrombus
in the renal vein appears as a filling defect.>®
For patients with renal vein thrombosis, the
first-line treatment involves medical man-
agement with anticoagulation therapy. In
select cases, catheter-guided thrombectomy
and filter placement in the inferior vena cava
are the preferred treatment options.>*

Figure 6. An axial contrast-enhanced CT scan (a) at the level of the kidneys demonstrates innumerable bilateral renal masses with intralesional macroscopic fat,
diagnostic of angiomyolipomas (AMLs) (black arrows). Bilateral AMLs, the most common renal neoplasm associated with spontaneous hemorrhage, are seen in 95%
of patients with tuberous sclerosis complex. They have the propensity to form pseudoaneurysms and present a higher risk of bleeding if they reach a size of >4 cm.
(b) Digital subtraction angiography of the left kidney demonstrates opacification of the renal arteries with multiple tortuous tumor vessels and pseudoaneurysms
(black arrows). This pattern is typical of multiple AMLs in the setting of tuberous sclerosis. CT, computed tomography.

Figure 7. An axial contrast-enhanced CT (a) through the kidneys demonstrates numerous bilateral angiomyolipomas (black arrows). A hematoma is present in the
right medial midpole (white circle), with central pseudoaneurysms (white arrow). (b, ¢) Digital subtraction angiography images of the right kidney demonstrate the
pseudoaneurysm (white arrow) with active contrast extravasation (black arrow) into the retroperitoneum, which was subsequently treated with coil embolization

(d) (black arrow). CT, computed tomography.
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Renal artery abnormalities

Vascular anomalies related to malignant
tumors, including renal artery aneurysms,
pseudoaneurysms, or renal arteriovenous
fistulas (AVFs), are among the main causes
of spontaneous perinephric bleeding in pa-
tients with cancer.? Additionally, renal vas-
cular injury may occur in a postprocedural
kidney following renal biopsy or nephros-
tomy tube placement. Pseudoaneurysms
demonstrate the classic yin-yang sign on
Doppler ultrasound owing to the swirling
motion of the blood in the sac. On CT angi-
ography (CTA) and MR angiography (MRA),
pseudoaneurysms are seen as outpouchings
of the renal arteries that follow the blood
pool (Figures 8-10). Renal AVFs appear on ul-
trasound as areas of aliasing artifacts. In rare
cases, a color flash is observed, sometimes
referred to as a visible thrill; it is caused by
soft-tissue vibrations around the renal AVF
that lead to a distinct color mosaic overlying

the adjacent tissue. Spectral analyses of AVFs
demonstrate elevated peak systolic veloci-
ties, spectral broadening, reduced resistive
indexes, and arterialization of the draining
veins.?2 Identifying small renal AVFs might
pose challenges during CTA and MRA, but
when they are identified using these imag-
ing techniques, they display abnormal arte-
riovenous connections with early draining
venous channels.

Despite its low incidence, the rupture of
a renal artery aneurysm or an AVF is associ-
ated with substantial mortality. The rupture
can be confirmed using arterial-phase CT im-
aging, which displays active extravasation of
contrast material with attenuation similar to
that of the blood pool, as noted earlier.?

Although TAE can be used to successful-
ly treat less severe episodes of bleeding, an
immediate nephrectomy may be necessary
in cases of severe bleeding.”” Considering

the dangers of disease development and
recurrence, TAE is the preferred therapeu-
tic approach. Employing nephron-sparing
interventions is recommended to preserve
renal function. For unruptured large renal
artery aneurysms greater than 2 cm in di-
ameter, prophylactic embolization may be
necessary.*~° Endovascular intervention has
emerged as a safe and effective method for
managing renal artery aneurysms and may
replace surgery as the primary therapeutic
approach.””*° Renal artery aneurysms less
than 2 cm in diameter can be closely moni-
tored through follow-up imaging. However,
prompt embolization is imperative.***° Pro-
phylactic TAE is recommended for renal ar-
tery aneurysms at high risk of rupture and for
symptomatic patients.>¢°

Potential mimics of renal bleeding

Lymphoma affecting the kidneys is com-
monly observed in widespread non-Hodgkin

\

Figure 8. Axial CT images pre-biopsy (a) and post-biopsy (b) of a right renal mass (black arrows) demonstrate a large amount of perinephric hemorrhage post-biopsy
(black arrows). Foci of contrast blush may represent pseudoaneurysms and/or active bleeding (white arrows). (c) An angiogram of the left kidney demonstrates
active contrast extravasation in the mid kidney (white arrow). CT, computed tomography.

Figure 9. Axial contrast-enhanced CT images pre- (a) and post-biopsy (b) of a right renal mass (black arrows in a) demonstrate the development of a large
pseudoaneurysm status post-biopsy (white circle), right renal parenchymal laceration (white arrows in b), and a large perinephric hematoma (black arrows in b).
An angiogram (c) demonstrates an active contrast extravasation (white arrow) that was subsequently treated with coil embolization. CT, computed tomography.
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Left Kidney Long

Figure 10. (a) A grayscale ultrasound of the left kidney after a non-targeted renal biopsy demonstrates a hyperechoic mass-like area in the left kidney lower
pole (black arrow). (b) An axial non-contrast CT confirms a small subcapsular hematoma (black arrow). (c, d) A digital subtraction angiography of the left kidney
demonstrates a small pseudoaneurysm (black arrow in ), which was subsequently embolized (d). CT, computed tomography.

Figure 11. (a) An axial image from a contrast-enhanced CT scan in a 68-year-old man with a biopsy-proven perinephric lymphoma demonstrates a high attenuation
mass (58 HU) surrounding the lower pole of the left kidney. This is also seen in the coronal reformatted image (b). The pre-contrast scan (c) at the same level
demonstrates that the mass is of lower attenuation (32 HU), and the diffuse enhancement is suggestive of a mass rather than a hemorrhage. CT, computed

tomography; HU, Hounsfield units.

lymphoma and is more prevalent in patients
with a weakened immune system.>¢! The ap-
pearance of renal lymphoma on imaging de-
pends on the growth pattern and histology
of the tumor.®' The typical imaging presenta-
tion of renal lymphoma consists of multiple
parenchymal masses of variable sizes, usually
ranging from 1 to 4.5 cm in diameter.*"** This
pattern is observed in approximately 50%-—
60% of cases. Although these masses are of-
ten bilateral, they can also be unilateral.s™®
On unenhanced CT, these masses exhibit
soft-tissue characteristics with slightly higher
attenuation than the surrounding renal pa-
renchyma.®' Calcifications within the tumoral
foci are infrequent. It is crucial to employ IV
contrast-enhanced CT scanning during the
nephrographic phase because many tumoral
foci are small and primarily involve the med-
ullary region of the kidneys, resulting in sub-
tle cortical deformity. Lymphomatous de-
posits exhibit less enhancement than normal
renal tissues and appear as relatively homo-
geneous masses with lower attenuation than
the surrounding cortex.’' Perirenal lympho-
ma can exhibit various attenuation values
on CT and can mimic perirenal hematoma

by encasing the perirenal soft tissue around
the blood vessels (Figure 11). It is critical to
accurately distinguish fluid, blood products,
and inflammation from soft-tissue masses.
Homogeneous, relatively mild enhancement
is characteristic of perirenal lymphoma, and
the perinephric fat may separate the tumor
from the kidney. Moreover, lymphoma can
be staged using positron emission tomogra-
phy and CT.3#

In conclusion, renal bleeding presents a
substantial challenge in managing patients
with cancer, particularly those with RCC or
those undergoing anticoagulant therapy. Di-
agnostic cross-sectional imaging techniques,
including ultrasonography, CT, and MRI, are
crucial for identifying and evaluating the
etiology of renal bleeding. SWI is useful in
detecting and characterizing renal masses
associated with renal bleeding, especially mi-
crohemorrhages. Therapeutic options range
from the observation of stable patients to
TAE for active bleeding control. Treatment
options for RCC vary depending on the dis-
ease stage: ablation, partial nephrectomy,
or radical nephrectomy. Prospective studies
comparing different treatment modalities
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(e.g., TAE, nephron-sparing surgery, and total
nephrectomy) in specific patient subgroups
provide valuable insights into personalized
treatment approaches. Addressing these
gaps can enhance the understanding of re-
nal bleeding in patients with cancer, improve
evidence-based diagnosis, management,
and prevention recommendations, and ulti-
mately enhance patient outcomes and qual-
ity of life.
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Diagnostic performance of the O-RADS MRI system for magnetic
resonance imaging in discriminating benign and malignant adnexal
lesions: a systematic review, meta-analysis, and meta-regression

Gulstim Kilickap

PURPOSE

After the introduction of the Ovarian-Adnexal Reporting and Data System (O-RADS) for magnetic
Ankara Bilkent City Hospital, Clinic of Radiology, resonance imaging (MRI), several studies with diverse characteristics have been published to assess
Ankara, Tiirkiye its diagnostic performance. This systematic review and meta-analysis aimed to assess the diagnos-

tic performance of O-RADS MRI scoring for adnexal masses, accounting for the risk of selection bias.

METHODS

The PubMed, Scopus, Web of Science, and Cochrane databases were searched for eligible studies.
Borderline or malignant lesions were considered malignant. All O-RADS MRI scores >4 were consid-
ered positive. The quality of the studies was assessed using the Quality Assessment of Diagnostic
Accuracy Studies-2 tool. The pooled sensitivity, specificity, and likelihood ratio (LR) values were cal-
culated, considering the risk of selection bias.

RESULTS

Fifteen eligible studies were found, and five of them had a high risk of selection bias. Between-study
heterogeneity was low-to-moderate for sensitivity but substantial for specificity (1> values were
35.5% and 64.7%, respectively). The pooled sensitivity was significantly lower in the studies with
a low risk of bias compared with those with a high risk of bias (93.0% and 97.5%, respectively;
P = 0.043), whereas the pooled specificity was not different (90.4% for the overall population).
The negative and positive LRs were 0.08 [95% confidence interval (Cl) 0.05-0.11] and 10.0 (95% ClI
7.7-12.9), respectively, for the studies with low risk of bias and 0.03 (95% Cl 0.01-0.10) and 10.3
(95% Cl 3.8-28.3), respectively, for those with high risk of bias.

CONCLUSION

The overall diagnostic performance of the O-RADS system is very high, particularly for ruling out
borderline/malignant lesions, but with a moderate ruling-in potential. Studies with a high risk of
selection bias lead to an overestimation of sensitivity.

CLINICAL SIGNIFICANCE

The O-RADS system demonstrates considerable diagnostic performance, particularly in ruling out
borderline or malignant lesions, and should routinely be used in practice. The high between-study
heterogeneity observed for specificity suggests the need for improvement in the consistent char-
acterization of the benign lesions to reduce false positive rates.
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varian cancer is one of the leading

causes of cancer-related death in

women. Accurate characterization
of adnexal masses is crucial for correct di-
agnosis and the prevention of unnecessary
surgery. Transvaginal ultrasound is the first-
line diagnostic method due to its relative
affordability and widespread availability.
However, magnetic resonance imaging (MRI)
offers several advantages over ultrasound,
including better characterization and visual-
ization of the origin of the mass and higher
resolution. Recently, the American College
of Radiology (ACR) proposed a method-the
Ovarian-Adnexal Reporting and Data System
(O-RADS) for MRI (O-RADS MRI)- to standard-
ize the analysis of adnexal masses.’

Following the introduction of the O-RADS
MRI system, several studies assessing its
validity, including a small number of me-
ta-analyses, have been published.”® These
studies have diverse characteristics and were
conducted at single or multicenter sites with
varying levels of expertise and patient vol-
umes. Given the increasing number of stud-
ies on the diagnostic value of the O-RADS
MRI score in recent years and the potential
heterogeneity among them, this study aims
to conduct an updated systematic review
and meta-analysis of these studies by taking
into consideration their risk of bias. There-
fore, this systematic review, meta-analysis,
and meta-regression aim to assess the di-
agnostic value of the O-RADS MRI system in
assessing adnexal masses and to reveal the
rule-in and rule-out potential of borderline
or malignant adnexal masses. Unlike oth-
er meta-analyses, the objective is to calcu-
late the pooled sensitivity and specificity of
O-RADS according to whether the studies
included in the analysis are at high or low risk
of patient selection bias.

Methods

This systematic review and meta-analysis
were prepared and presented in accordance

* The diagnostic performance of the Ovar-
ian-Adnexal Reporting and Data System
(O-RADS) for magnetic resonance imaging
(MRI) system is very high.

* The O-RADS MRI system is valuable in ruling
out borderline or malignant adnexal mass-
es.

* The ruling-in potential of the O-RADS sys-
tem is moderate.

* Studies with a high risk of bias lead to over-
estimation of the sensitivity.

with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA)
recommendations.' Since the data were ob-
tained from manuscripts, informed consent
was not required, and ethics committee ap-
proval was waived.

Study population and research question

The study population and research ques-
tion were structured according to the PICO
format (P- population, I- intervention/in-
dex test, C- comparator/reference test, and
O- outcome) and included patients who
underwent pelvic MRI examinations for ad-
nexal masses. Studies were excluded if any
of the following criteria were present: 1)
absence of the standard reference test, 2)
O-RADS scoring using non-MRI methods, 3)
case-control studies or inappropriate selec-
tion or exclusion, 4) studies in which only
specific lesions (such as only cystic lesions)
or a specific O-RADS category were evaluat-
ed, and 5) studies assessing O-RADS scoring
with non-contrast MRI, as this is not includ-
ed in the standards proposed by the original
O-RADS MRI scoring.

The index test was based on O-RADS MRI
scoring, in which a score >4 was considered
positive, and its diagnostic value was com-
pared with the reference standard test result.

The comparison was made using the
pathology or reasonable follow-up as a ref-
erence test. Borderline or malignant lesions
were considered malignant.

The outcomes were diagnostic perfor-
mance measures that included sensitivity,
specificity, summary receiver operating char-
acteristics (SROC) curve, and likelihood ratios
(LRs).

Searching and extracting the data

The PubMed, Scopus, Web of Science, and
Cochrane Central Register of Controlled Tri-
als databases were searched for eligible stud-
ies on December 29, 2023. The search terms
used inthe PubMed database were as follows:
“("Ovarian”[Title/Abstract] OR “adnexal”[Ti-
tle/Abstract] OR“pelvic”[Title/Abstract]) AND
(“Cancer”[Title/Abstract] OR “malignan®*"[Ti-
tle/Abstract] OR “tumor”[Title/Abstract] OR
“mass*"[Title/Abstract] OR “lesion"[Title/Ab-
stract]) AND (“O-RADS"[Title/Abstract] OR
“ORADS"[Title/Abstract] OR“Ovarian adnexal
reporting and data system”[Title/Abstract])
AND (“magnetic resonance imaging”[MeSH
Terms] OR (“Magnetic Resonance”[Title/Ab-
stract] OR “MRI"[Title/Abstract] OR “MR"[Ti-
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tle/Abstract]))” The same search terms were
used in other databases with slight modifica-
tions to conform to the database’s rules. No
restriction (including language) was applied
to the database searches.

The selection of the eligible studies and
the number of manuscripts obtained from
each database are shown in the PRISMA flow-
chart (Figure 1). After removing duplicated
manuscripts, the titles and abstracts were ini-
tially screened for eligible studies, followed
by a subsequent screening of the full-text
manuscripts. One of the eligible studies was
published in Chinese, and the full-text man-
uscript could not be obtained.® However, the
abstract contained the required information
to conduct a diagnostic meta-analysis; there-
fore, no eligible studies were discarded in the
analysis.

For studies in which more than one inves-
tigator evaluated the MRI scores, the mea-
surements of the most experienced inves-
tigator were used. If the most experienced
investigator made more than one measure-
ment, the first measurement was included in
the analysis.

Lesion-based O-RADS MRI scoring was
analyzed. Since lesion-based data could
not be obtained in one study,'® data for pa-
tient-based assessments given in the article
were included in the analysis.

Assessment of the quality of the included
studies

The quality of each eligible study was as-
sessed using the Quality Assessment of Diag-
nostic Accuracy Studies-2 (QUADAS-2) tool.*®
This tool includes four domains (patient
selection, index test, reference standard,
and flow and timing) to evaluate the risk of
bias and applicability of primary diagnostic
accuracy studies. Each study was scored for
both risk of bias and concern for applicability
as high, unclear, or low. Critical appraisal of
the selected studies was conducted by two
reviewers independently, and any discrepan-
cies were resolved through consensus.

Certainty of evidence

Certainty of evidence was assessed using
the Grading of Recommendations, Assess-
ment, Development, and Evaluations tool.”’
As the pooled sensitivity was significantly
different for the studies with low and high
risk of bias, certainty of evidence was provid-
ed for sensitivity for the studies with low risk
of bias. However, as there was no significant
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difference in specificities between the stud-
ies with low and high risk of bias, certainty
of evidence for specificity was given for the
overall group.

Statistical analysis

Using the cut-off value of O-RADS scores
>4, the number of the true positive, false
positive, true negative, and false negative re-
sults were recorded, and sensitivity and spec-
ificity values were calculated. The data were
pooled using bivariate random effects model
meta-analysis and presented as a forest plot
and the SROC curve. Random effects me-
ta-regression analysis was performed by in-
cluding the variable of patient selection bias,
which was obtained with the QUADAS-2 tool
(Model 1). In the case of significant relative
sensitivity or specificity for the selection bias
categories of high-risk versus low-risk group,
the corresponding diagnostic measure was
presented separately. Then, the age and the
proportion of borderline or malignant cases
were included in the meta-regression (Model
2). The mean (or median) age was not pre-
sented in the two studies;®'? therefore, these
missing values were replaced with the over-
all mean obtained from the remaining stud-
ies. The performances of Model 1 and Model
2 were compared using the LR test.

The bivariate random effects model uses
an unstructured variance-covariance matrix
as the default method. The model was also
run with the independent variance—covari-
ance matrix to test whether the simpler (par-
simonious) model is appropriate. Then the
two models with different matrix structures
were compared using the Akaike informa-
tion criteria (AIC). As the model with an un-
structured variance-covariance matrix had
a lower (better) value of AIC, it is presented
here.

The pooled estimates for positive and
negative LR for O-RADS MRI scoring in diag-
nosing borderline or malignant lesions were
calculated. It is generally accepted that a
positive LR of >10 and negative LR of <0.1 are
valuable in confirming or excluding the dis-
ease, respectively, while values of 5-10 and
0.1-0.2, respectively, are moderately effec-
tive in this regard.”? The point estimates and
their 95% confidence interval (Cl) for positive
and negative LR values (the LR matrix) were
plotted to visually assess the confirming or
excluding potential of O-RADS MRI scoring.
Additionally, Fagan’s nomogram was plot-
ted to calculate the post-test probability of
having borderline or malignant lesions. The
mean and median values of the borderline/

malignancy lesion proportions were 25.5%
and 24.4%, respectively. Therefore, Fagan’s
nomogram was plotted using the pre-test
probability value of 25% for borderline/ma-
lignant lesions.

The between-study heterogeneity was
assessed using the I statistics proposed by
Zhou and Dendukuri® and also with Co-
chran’s Q statistics and its P value. The I? pa-
rameter has values of 0%-100%; the values
>50% and >75% are considered moderate
and severe heterogeneity, respectively. Pub-
lication bias was assessed with a funnel plot
proposed by Deeks et al.?* and tested statis-
tically. A P value of <0.05 was considered sig-
nificant. Statistical analyses were performed
using Stata version 17 (StataCorp, TX, USA),
and the “metadata” and “midas” packages
were used for the analysis.

Results

Fifteen eligible studies were found. The
PRISMA flowchart for the selection of these
studies is provided in Figure 1, and the char-
acteristics of these studies are given in Table
1. Five of the studies were considered to have
a high risk of patient selection bias based on
the QUADAS-2 report. Figure 2 summarizes
the interpretation with the QUADAS report,

and the details are given in Supplementary
Table 1.

The mean age ranged from 35.9 to 57
years, with a mean and standard deviation of
46.1 = 7.1 years and a median and interquar-
tile range (IQR) of 48.7 (40.0-50.8) years. The
median proportion of borderline or malig-
nant lesions was 25.2% (IQR 13.5%-38.8%).
For the studies with a low risk of selection
bias, this ranged from 11.2% to 52.9%, with
a mean = standard deviation of 25.5 + 13.3
years and a median and IQR of 24.4 (13.5-
31.4) years; for those with a high risk of bias,
the range was from 11.8% to 65.4%, with a
mean * standard deviation of 32.4 + 22.1
years and a median and IQR of 28.3 (14.3-
42.0) years.

Meta-analysis of the eligible studies

The sensitivity values ranged from 81%
to 100%, while specificity values ranged
from 58.0% to 97.9%. In the analysis strati-
fied for the risk of selection bias, there was
low-to-moderate between-study hetero-
geneity for diagnostic sensitivity [I? values
were 35.5% for the overall group and 39.8%
and 14.2% for the studies with low risk and
high risk of selection bias, respectively. The
corresponding Cochran’s Q statistics (P val-
ues) were 21.71 (P = 0.085), 14.95 (P = 0.092),

Records removed before screening:
Duplicate records (n = 86)

Excluded (n = 65)
*  Guidelines, consensus reports,
meta-analysis (n = 43)

)
]
=z Records identified from:
53 PubMed (n = 50)
= Scopus (n = 80)
= Web of Science (n = 50)
e} Cochrane Central (n = 0)
l
e §
Records screened by title and
abstract
(n=94)
=)
[
=
)
e
o
(%]
Y
Records assessed by full-text
(n=29)
B Studies included in meta-
3 analysis
= (n=15)
=

A 4

Ultrasound studies (n = 12)
Erratum or editorial (n = 6)

Case report or case series (n =2)
Additional duplication ( n=2)

Excluded (n = 14)

*  Ultrasound studies (n = 3)
Subgroup data (n = 3)
Letter (n=1)
Specific pathology such as
cystic lesion (n =2) or specific
O-RADS group (n=1)
Not conventional method
(amide proton transfer MR, MR
spectroscopy or non-contrast
MR (n=3)
Case-control study or
inappropriate exclusion (n = 1)

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses flowchart for selection of
eligible studies. O-RADS, Ovarian-Adnexal Reporting and Data System; MR, magnetic resonance.
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Table 1. The characteristics of the included studies

Author Publication Screening period Number Number  Percentage of Mean or Reference standard
year of patients  of lesions  the borderline  median age
or malignant (years)
lesions (%)
Aslan and Tosun? 2023 Jan 2018-June 2020 200 237 11.8 56.3 Pathology or 24-month follow-up
Jan 2014-July 2020 and
3

Bang et al. 2022 Jan 2010-July 2020 110 110 54.6 50.8 Pathology
Basu et al.* 2022 April 2020-June 2021 42 46 283 359 Pathology or 4-month follow-up
Campos et al. 2023 Mar s, 22001231-Dec 31, 227 269 11.2 40 Pathology or 24-month follow-up
Chen et al.® 2023 Jan 2017-Aug 2021 309 327 11.8 - Pathology
Crestani et al.” 2020 2014-2018 26 26 65.4 57 Pathology
Elshetry et al.® 2023 April 2020-Sep 2021 90 116 38.8 394 Pathology or 12-month follow-up
Guoetal? 2022 July 2017-June 2020 54 56 143 37 Fetieley eI e Tes el

follow-up
Hottat et al.’ 2022 Jan 2015-April 2020 163 201 289 51 Pathology
Manganaro et al." 2023 Jan 2015-June 2022 140 172 529 48.7 Pathology or 12-month follow-up
Pereira et al.” 2022 Feb 2014-Dec 2020 226 287 314 - Pathology or 12-month follow-up
Thomassin- Mar 1, 2013-Mar 31,
Naggara et al.® 2020 2016 1,130 1502 13.5 49 Pathology or 24-month follow-up
Wang et al.® 2023 May 2017-July 2022 240 278 252 42 fatlicle ey glleliont et

follow-up

2023 (online
Woo et al." ahead of April 2021-Aug 2022 119 119 17.6 50 Pathology or =6-month follow-up
print)
Wu et al.” 2023 Jan 2018-Mar 2022 308 362 11.6 42.1 Pathology
and 4.66 (P = 0.324), respectively]. Howev-
er, substantial heterogeneity was observed
Risk of Bias Concerns regarding applicability

for specificity [I> values were 64.7% for the
overall group and 66.20% and 62.4% for the
studies with low risk and high risk of selec-
tion bias, respectively. The corresponding
Cochran’s Q statistics (P values) were 39.66
(P < 0.001), 26.63 (P = 0.002), and 10.6 (P =
0.031), respectively].

Meta-regression analysis revealed that the
pooled sensitivity was significantly different
for the studies with low risk and high risk of
bias; the sensitivity values were slightly, but
significantly, lower for the studies with low
risk of bias compared with those with a high
risk of bias [the relative pooled sensitivity for
low risk versus high risk of bias studies was
0.954 (95% C10.911-0.999), P = 0.043]. There-
fore, the pooled sensitivity values are given
separately for the studies with low and high
risk of bias (Figure 3), and they were 93.0%
(95% Cl 89.1%-95.5%, with high certainty
of evidence) for the studies with low risk of
bias, and 97.5% (95% Cl 91.3%-99.3%) for
the studies with high risk of bias. The pooled
specificities were not significantly different
for the studies with low and high risk of bias
[the relative specificity for the studies with
low vs. high risk of bias was 1.014 [(95% ClI
0.930-1.106); P = 0.752]. The pooled specifici-
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Flow & Timing |

T T T T T
0 20 40 60 80 100
Proportion, %
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Reference standard | ‘
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\E Lowrisk [] Highrisk [T Unclear \

Figure 2. Methodological quality assessment according to the Quality Assessment of Diagnostic Accuracy

Studies-2 tool.

ty for the overall study population was 90.4%
(95% Cl 86.6%-93.2%, with moderate cer-
tainty of evidence due to high unexplained
heterogeneity; Figure 3). The model perfor-
mance did not increase with the inclusion of
the variables of mean age and proportion of
borderline or malignant lesions into the re-
gression model (P =0.232).

The SROC plot is presented in Figure 4
(the SROC plot with confidence and pre-
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diction intervals is given in Supplementary
Figure 1). The plot shows that the diagnostic
performance of the O-RADS system is very
high (the point estimate is very close to the
upper left corner of the SROC plot). Addition-
ally, the plot reveals that the diagnostic per-
formance is slightly lower for the studies with
a low risk of bias compared with those with
a high risk of bias [area under the curve 0.97
(95% C1 0.95-0.98); P < 0.001 vs. 0.99 (95% ClI
0.97-0.99); P < 0.001, respectively], probably

Giilsiim Kilickap.



Study

High risk of bias

Sensitivity (95% Cl)

Specificity (95% Cl)

Aslan - 2023 = 0.964 (0.817, 0.999) —_— 0.952 (0.914, 0.977)
Bang - 2022 ————=1.000 (0.940, 1.600) ' 0.580 (0.432, 0.718)
Basu - 2022 = ‘ 0.923 (0.640, 0.998—= - 0.879 (0.718, 0.966)
Crestani - 2020 -— 0.941 (0.713, 0.989} -— 0.889 (0.518, 0.997)
Guo - 2022 ; 1.000 (0.631, 1.000) . 0.979 (0.889, 0.999)
Summary —_—T = 0975(0913, 08 o —— 0.896 (0.804, 0.947)
Low risk of bias i 5
Campos - 2023 ; 0.833 (0.653, 0.944) —_— 0.929 (0.889, 0.958)
Chen - 2023 - : 0.857 (0.759, 0.926) —_—— 0.924 (0.884, 0.954)
Elshetry - 2023 ; 0.978 (0.882, 0.989—8———— 0.873 (0.773, 0.940)
Hottat - 2022 — 0.966 (0.881, 0.996—— i 0.825 (0.753, 0.884)
Manganaro - 2023 : 0.967 (0.907, 0.993) - 0.951 (0.878, 0.986)
Pereira - 2022 = - 0.916 (0.841, 0.963) | — 0.949 (0.909, 0.976)
Thomassin-Naggara - 2020 ~—————&——— 0.931 (0.887, 0.962) —— 0.915 (0.895, 0.932)
Wang - 2023 ; 0.957 (0.880, 0.98H : 0.812 (0.753, 0.863)
Woo - 2024* ! 0.810 (0.581, 0.946—————#——— 0.908 (0.833, 0.957)
Wu - 2023 ‘ 0.905 (0.774, 0.973) —_—— 0.931 (0.898, 0.956)
Summary —_— 0.930 (0.891, 0.955) 0.908 (0.865, 0.938)
Overall —— 0.950 (0.916, 0.970) ———| —— 0.904 (0.866, 0.932)
.85 9 1 .85 E:) 1
Sensitivity Specificity

Figure 3. Forest plot of the pooled sensitivity and specificity. *Online publication in 2023, ahead of print.
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Figure 4. Summary receiver operating
characteristics curve  for the  diagnostic

performance of the Ovarian-Adnexal Reporting
and Data System scoring. The blue circles represent
individual studies, with their sizes proportional
to the respective sample sizes. The red and green
diamonds denote the point estimates (summary
points), while the red and green solid lines illustrate
the summary curves for studies with high and
low risk of bias, respectively. For a more detailed
depiction, including the confidence interval and
prediction interval, please refer to Supplementary
Figure 1.

due to lower pooled sensitivity in the low-
risk bias group. However, Supplementary
Figure 1 reveals that the precision is higher
for the studies with a low risk of bias.

The pooled positive and negative LR val-
ues are provided in Supplementary Table 2.
The LR matrix plot (Figure 5) indicates that

Overall
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Figure 5. Likelihood matrix shows the pooled estimate (the diamond) and 95% confidence intervals of the
negative and positive likelihood ratios, and exclusion and/or confirmation potential of the Ovarian-Adnexal
Reporting and Data System scoring for borderline or malignant lesions.

the O-RADS system is more valuable for rul-
ing out borderline or malignant lesions. In
the overall population (Figure 5, left panel),
the upper limit of the 95% Cl of the negative
LR is just at the cut-off limit of 0.1 [negative
LR 0.07 (95% Cl 0.05-0.10)]. A similar finding
was observed for those with a high risk of
bias but with a wider Cl (Figure 5, right panel,
Supplementary Table 2). Although the point
estimate of the negative LR for the studies
with low risk of bias was in the rule-out zone,
the Cl slightly crossed the cut-off value of 0.1
[negative LR for the low-risk group was 0.08
(95% C10.05-0.11)]. The point estimate of the
pooled positive LR value was around the cut-
off value of 10, with a lower limit of 95% Cl
>5, except for the value obtained from the
studies with a high risk of bias. This suggests
that the ruling-in potency of O-RADS scoring

is moderate. The Fagan’s nomogram demon-
strates obtaining the post-test probability of
having borderline or malignant lesion de-
pending on the positive (O-RADS 4 or 5) or
negative (O-RADS <4) test result (Figure 6).

Deeks’ funnel plot indicates that there is
no concern for publication bias (P = 0.812;
Figure 7).

Discussion

This systematic review and meta-anal-
ysis show that 1) the pooled sensitivity of
O-RADS MRI scores =4 in diagnosing bor-
derline or malignant adnexal tumors is high
and varies slightly according to whether the
study population has a low or high risk of pa-
tient selection bias [the sensitivity is slightly,
but significantly, lower in the low-risk of bias
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group (93.0% vs. 97.5%)]; 2) the pooled spec-
ificity of the O-RADS MRI score is 90.4% in the
overall population with no significant differ-
ence between the studies with low risk and
high risk of selection bias, and 3) using the
cut-off value of >4, the O-RADS MRI scores is
valuable in ruling out the borderline or ma-
lignant lesions, although the ruling-in poten-
cy is relatively lower.

Ovarian cancers are estimated to be re-
sponsible for 5% of cancer-related deaths in
women, with a 5-year survival rate of 50%.%
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Figure 6. Fagan’s nomogram for the Ovarian-
Adnexal Reporting and Data System (O-RADS)
scoring. The green diamond on the pre-test
probability line (on the left side) represents the
overall pre-test probability (25%) obtained from
this meta-analysis. Utilizing the pooled likelihood
ratio values, the solid red arrow and the dashed grey
arrow indicate the post-test probability of having
a borderline or malignant lesion when the test is
positive (O-RADS 4 or 5) or negative (O-RADS <4),
respectively. LR, likelihood ratio.
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Figure 7. Deeks’ plot for publication bias.

Ultrasonography is the first-line diagnostic
method due to its low cost and wide avail-
ability. MRI is a better diagnostic method
in terms of characterization and determin-
ing the origin of adnexal masses. To have a
similar lexicon between radiologists and cli-
nicians and for accurate referral of patients
for surgical treatment, the ACR developed
a system- O-RADS- for the characterization
of adnexal masses.! After introducing the
O-RADS system, several studies assessing
its diagnostic performance have been pub-
lished. In this study, a systematic review and
meta-analysis of these studies were conduct-
ed to obtain updated information along with
consideration of the risk of selection bias for
each study.

The present study demonstrates that the
heterogeneity between the studies for diag-
nostic sensitivity is not high, which implies
that the results of the studies among the bor-
derline or malignant lesions are consistent.
On the other hand, the heterogeneity be-
tween the studies for diagnostic specificity is
high. This implies that the consistency of the
O-RADS system for benign lesions is relative-
ly low, particularly for studies with a high risk
of patient selection bias. High heterogeneity
for specificity was also demonstrated in a
previous meta-analysis,'® but that included a
lower number of studies and did not consid-
er the risk of bias while pooling the results.

Both the sensitivity and specificity of the
O-RADS system in discriminating benign
lesions and borderline or malignant lesions
are high, although the sensitivity is higher
than the specificity. The pooled sensitivity
varies for those with or without a high risk
of patient selection bias, and studies with a
low risk of bias have a lower, but acceptable,
pooled sensitivity (93.0% vs. 97.5%). Specific-
ity was also high, but similar for the studies
with low or high risk of selection bias. Consis-
tent with these findings, the SROC plot shows
that the O-RADS system has high diagnostic
performance (discrimination) for borderline
or malignant lesions. This suggests that the
O-RADS system is a good tool for referring
patients to surgery. The SROC plot (Supple-
mentary Figure 1) also shows that the pre-
cision (based on the 95% Cl and prediction
interval) is very high for the studies with a
low risk of bias but is relatively lower for the
studies with a high risk of bias.

Because of the high sensitivity, O-RADS
MRI scoring is valuable for ruling out border-
line or malignant lesions. This is supported
by the LR matrix plot. It is generally accepted
that a negative LR value of <0.1 indicates that

1 76 + May 2025 - Diagnostic and Interventional Radiology

the test is valuable in ruling out the disease,
and a positive LR value of >10 indicates the
test is valuable in ruling in the disease??¥
although they are arbitrarily chosen cut-off
values. Furthermore, negative LR values of
0.1-0.2 and positive LR values of 5-10 indi-
cate that the test is moderately effective in
ruling out and ruling in the disease, respec-
tively. In the present study, the upper limit of
the 95% Cl of the negative LR value was just
at the cut-off value of 0.1 in the overall pop-
ulation and in the analysis of the studies with
a high risk of bias, which suggests O-RADS
MRI is good at in excluding the disease. For
the studies with a low risk of bias, although
the upper limit of 95% Cl for the negative LR
slightly crossed the cut-off value (negative LR
value 0.08, 95% Cl 0.05-0.11), the ruling-out
potential was largely preserved. The point es-
timates of the positive LR values were around
the cut-off value of 10, and although the Cl
crossed the cut-off value of 10, the lower
limit was >5 for the overall population and
those with a low risk of selection bias (Sup-
plementary Table 2). This finding suggests
the O-RADS MRI score is moderately effective
in ruling in the disease.

In the EURAD study, the prospective Eu-
ropean multicenter cohort, misclassified cas-
es were assessed in terms of three types of
error: errors caused by technical limitations,
inadequate experience (perceptual error), or
interpretive errors.® The interpretive error
was found to be the most common cause
of the misclassification, which was mostly
due to rating benign lesions as O-RADS 4
or 5 (false positive result). Even if some of
the false positive results were caused by a
concern for missing the malignancy, they
demonstrated that the misclassification was
substantially reduced with strict application
of O-RADS scoring. The false positive result is
associated with low specificity. In the present
study, the heterogeneity between the stud-
ies was high for the specificity. Additionally,
compared with sensitivity, specificity was rel-
atively low. This may suggest a problem with
the rating of benign lesions. Therefore, ap-
proaches to increase specificity and reduce
potential heterogeneity in the interpretation
of the benign lesions may reduce unneces-
sary surgical procedures by keeping the false
positive rate low. This may be obtained by
reducing interpretive errors by applying the
O-RADS scoring meticulously and by increas-
ing the awareness of some lesions that may
be misclassified. Thomassin-Naggara et al.?®
discussed these lesions in their article and
underlined the importance of the difference
between a solid lesion and a solid compo-
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nent for correct classification. Another factor
for correct classification is the availability
of technically adequate MRI images, which
has been discussed elsewhere.?® In addition,
some refinement in the O-RADS system may
improve its diagnostic value. Several meth-
ods seem promising in increasing the diag-
nostic performance of the O-RADS system.
Wengert et al*° showed that time-intensity
curve analysis was superior to visual assess-
ment and improved the specificity. Further-
more, diffusion-weighted imaging improves
the diagnostic performance of the O-RADS
MRI system.” Application of these methods
may reduce false positive results by increas-
ing specificity and may also increase its rul-
ing-out potential further by increasing the
sensitivity.

The present study has several limita-
tions. First, as in many meta-analyses, data
were extracted from published manuscripts;
therefore, individual participant data were
not available. Although it is very difficult to
obtain, individual participant data analysis
provides more reliable information and may
provide detailed reasons for heterogeneity.
Second, we did not analyze the data based
on the readers’ experience; other confound-
ing factors may also affect the results. How-
ever, the relatively low number of studies
precludes taking many factors into consid-
eration, especially if individual data are not
available. Third, we aimed to assess the “in-
trinsic” diagnostic performance of O-RADS
MRI scoring; therefore, cancer antigen 125
levels, or other factors such as menopausal
status or family history that may be used to
assess the pre-test probability of the malig-
nancy, were not used in the analysis. Instead,
we preferred to provide Fagan’s nomogram,
in which the pre-test probability obtained by
any marker or clinical predictors can be com-
bined with the “intrinsic” performance of the
O-RADS score to obtain the post-test prob-
ability. The present analysis also has some
advantages, such as including new studies,
and, in contrast to recent meta-analyses, as-
sessing the diagnostic performance and pro-
viding visual information about the ruling-in
and ruling-out potential according to the risk
of bias.

In conclusion, O-RADS MRI scoring is valu-
able in ruling out borderline or malignant
lesions, while the ruling-in potency is mod-
erate. Patient selection bias affects diagnos-
tic sensitivity, leading to a higher sensitivity
compared with the sensitivity obtained from
the studies with a low risk of bias. The high
between-study heterogeneity observed for

specificity suggests the need for improve-
ment in the consistent characterization of
the benign lesions to reduce false positive
rates.
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Supplementary Table 1. Assessment of the methodological quality of each study according to the QUADAS-2 tool

Risk of bias Concerns regarding applicability
Study Patient selection ~ Indextest  Referencetest Flow &timing  Patient selection Index test Reference test
Aslan and Tosun?- 2023 High* Low Low Low Low Unclear Low
Bang et al.*- 2022 High** Low Low Low High Low Low
Basu et al.*- 2022 High§ Low Unclear Low High Low Unclear
Campos et al.® - 2023 Low Low Low Low Low Low Low
Chen et al.- 2023 Low Low Low Low Low Low Low
Crestani et al.” - 2020 High§§ Low Low Low High Low Low
Elshetry et al. - 2023 Low Low Low Low Low Low Low
Guo et al®- 2022 HighjF Low Low Low Low Low Low
Hottat et al.’® - 2022 Low Low Low Low Low Low Low
Manganaro et al." - 2023 Low Low Low Low Low Low Low
Pereira et al.’> - 2022 Low Low Low Low Low Low Low
Thomassin-Naggara et
al.'*-2020 Low Low Low Low Low Low Low
Wang et al.”- 2023 Low Low Low Low Low Low Low
Woo et al.™*- 2023
(ahead of print) Low Low Low Low Low Low Low
Wu et al.’> - 2023 Low Low Low Low Low Low Low

*, Simplified method and exclusion of <3 cm cysts; **, includes patients underwent PET/CT; §, Non-probability sampling and 4-month of follow-up;

§§, includes a sub-population

who underwent surgery; *, included patients with >5 cm cystic lesions; QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies-2.
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Supplementary Table 2. The negative and positive likelihood ratios for the overall population and for the studies with low or high-risk of
bias

Negative likelihood ratio and 95% Cl Positive likelihood ratio and 95% Cl
Studies with low risk of bias 0.08 (0.05-0.11) 10.0(7.7-12.9)
Studies with high risk of bias 0.03 (0.01-0.10) 10.3(3.8-28.3)
Overall population 0.07 (0.05-0.10) 9.7 (7.0-13.3)

Cl, confidence interval
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Supplementary Figure 1. Summary receiver
operating characteristics curve for the diagnostic
performance of the O-RADS scoring. The blue circles
represent each study, with their sizes proportional
to the sample size of the respective study. The red
and green diamonds depict the point estimates
(summary points), while the red and green solid
lines illustrate the summary curve for the studies
with high and low-risk of bias, respectively.
Correspondingly, the red and green dashed lines
represent the confidence interval, and the red and
green dotted lines indicate the prediction interval
for the pooled estimates of studies with high and
low-risk of bias, respectively. O-RADS, Ovarian-
Adnexal Reporting and Data System.
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Open- and closed-type congenital cholesteatomas of the middle ear:
computed tomography differentiation and correlation with surgical
staging

Minjung Seong’

Hyung-Jin Kim1.2 PURPOSE

Yikyung Kim 1 To investigate the differences in computed tomography (CT) features between closed-type con-
genital cholesteatoma (CCC) and open-type congenital cholesteatoma (OCC) of the middle ear and
to evaluate the usefulness of preoperative CT examination for staging workup of congenital choles-
teatoma (CC) in correlation with the surgical findings.

Sung Tae Kim!

1Samsung Medical Center, Sungkyunkwan University

School of Medicine, Department of Radiology, Seoul, METHODS
Korea

We retrospectively reviewed the preoperative CT scans of the temporal bone obtained from 80
2Seoul St Mary’s Hospital, The Catholic University of patients with surgically confirmed CC of the middle ear. All patients had a solitary lesion, except for
Korea, College of Medicine, Department of Radiology, one patient with two lesions, resulting in 81 CCs, which formed the basis of this study. We compared
Seoul, Korea the CT features between CCCs and OCCs, focusing on their morphological characteristics, such as

size, shape, location, and bone change. Based on the Potsic classification, the stage of CCs was de-
termined at CT and surgery, and the results were compared between CCCs and OCCs.

RESULTS

Of the 81 CCs, surgery revealed 43 CCCs and 38 OCCs. On CT scans, CCC was frequently seen as a
small (median: 3.15 mm), round to oval (65.1%) mass, most commonly located in the anterosuperior
quadrant (74.4%) of the middle ear with less frequent ossicular erosion (14.0%). In contrast, OCC
was frequently seen as a large (median: 6.70 mm), irregular (94.7%) mass, most commonly located
in the posterosuperior quadrant (68.4%) of the middle ear with frequent ossicular erosion (55.3%).
The size, shape, location, and presence of ossicular erosion were significantly different between the
two types. Overall, the CT and surgical stages of CCs demonstrated good agreement (kappa value:
0.77) and the CT and surgical stages of OCCs were statistically significantly higher than those of
CCCs (P< 0.001 in both).

CONCLUSION
CT is useful for preoperative determination of the types and staging of CC of the middle ear.

CLINICAL SIGNIFICANCE

Preoperative differentiation between CCC and OCC is important to avoid reoperation and prevent
an extensive surgery. By providing valuable information on the morphology and extent of the le-
sions, CT is useful for not only the accurate preoperative determination of the type of CCs but also
the accurate prediction of staging of the lesion, which should be important to preparing optimal
treatment plans.
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ongenital cholesteatoma (CC) is de-

fined as a whitish mass behind an in-

tact tympanic membrane without a
history of tympanic membrane perforation,
otorrhea, or previous ear surgery.! The an-
nual incidence of CC is uncommon and re-
ported to be 0.12/100,000 individuals.>? It ac-
counts for 2%-5% of all cholesteatomas and
4%-24% of cholesteatomas in children.**The
condition occurs three times more frequent-
ly in male individuals than in female indi-
viduals and most frequently affects children
aged 4-5 years. Early detection and surgical
intervention is important to prevent exten-
sive surgery and preserve hearing; because
CC grows faster in children than in adults,
disease progression would be facilitated if
the diagnosis and treatment are delayed.>*¢
Although the most commonly affected lo-
cation is known to be the anterosuperior
quadrant of the middle ear, followed by the
posterosuperior quadrant,>* a predilection
to involve the posterosuperior quadrant has
also been reported, especially in Asian pop-
ulations.>%”

The pathogenesis of CC is unclear and
controversial, with the embryonic cell rest
theory being considered the most plausi-
ble.®? Although not particularly well known
among radiologists, it is well known among
otolaryngologists that there are two types of
CC, closed-type congenital cholesteatoma
(CCC) and open-type congenital cholestea-
toma (OCC), which differ in their morphology
and clinical course.? Histologically, the former
presents as an epithelial cyst without expo-
sure of keratin and the latter manifests as flat
keratinizing epithelium continuous with mid-
dle ear mucosa without formation of an epi-
thelial cyst.58°*Whether these two types have
a different pathogenesis or are a different
evolution of the same phenomenon is un-

* Closed-type congenital cholesteatomas
(CCCs) are smaller, more likely to be round
to oval, most commonly located in the an-
terosuperior quadrant of the middle ear,
and less frequently associated with ossicular
erosion than open-type congenital choles-
teatomas (OCCs).

* OCCs are larger, irregularly shaped, most
commonly located in the posterosuperior
quadrant of the middle ear, and more often
associated with ossicular erosion.

* Computed tomography (CT) and surgical
stages of OCCs are higher than those of
CCCs.

* CT can help to accurately determine the
type and stage of CC before surgery.

certain, but their clinical manifestations are
different. Compared with CCC, OCC occurs in
older age groups, is more difficult to identify
behind an intact tympanic membrane, and
involves greater difficulty in surgery.t There-
fore, preoperative differentiation between
CCC and OCC is important to avoid reopera-
tion and prevent an extensive surgery.?

In 2002, Potsic et al."' proposed a staging
system for CC according to the extent of le-
sions (Table 1), which appears to correlate
well with the severity of the disease and treat-
ment outcome.? Computed tomography (CT)
is widely considered the imaging modality of
choice for the diagnosis of CC.'*'2To the best
of our knowledge, however, only a few stud-
ies have been reported on the role of CT in
distinguishing OCC from CCC and determin-
ing preoperative staging.>'*'* Accordingly,
the aims of this study are to investigate the
different CT features of CC according to the
subtypes and to evaluate whether CT stag-
ing may correlate well with surgical staging.

Methods

Study population

A search of the electronic medical records
of Samsung Medical Center between Jan-
uary 1999 and February 2017 revealed 109
patients with surgically proven CC of the
middle ear, among whom CT scanning was
performed in 102. The diagnosis of CC was
made by otolaryngologists on the basis of
the criteria devised by Levine et al.’* Of the
102 patients, 22 were excluded due to insuf-
ficient medical records (n = 20) and recurrent
disease after surgery (n = 2). Finally, 80 pa-
tients (61 males and 19 females) aged 1-38
years (mean age + standard deviation: 5 +
5.6 years) were enrolled as the participants of
this study (Figure 1).

All patients were operated on by two oto-
laryngologists. They classified lesions as CCC
or OCC and determined lesion staging ac-
cording to the Potsic classification (Table 1).

Computed tomography examination

CT of the temporal bone was performed
on various models of multidetector helical

CT scanners (GE Healthcare, Milwaukee, WI,
USA) with variable mA, 120 kVP, 0.625-1.25-
mm section thickness and section spacing, a
field of view of 18 cm, and a high-resolution
algorithm. Direct or reformatted coronal im-
ages were routinely obtained. All the images
were viewed with the window width of 4000
HU and window level of 400 HU.

All CT scans were retrospectively re-
viewed by two neuroradiologists with clini-
cal experience of 30 and 3 years, respectively,
for the number, location, shape, and size of
the lesion, and any disagreements were re-
solved by consensus. The presence of ossicu-
lar erosion, labyrinthine fistula, and mastoid
involvement was also investigated. To deter-
mine the location of the lesion, we referred
to the handle of the malleus and divided the
tympanic cavity into four quadrants: antero-
superior, posterosuperior, anteroinferior, and
posteroinferior quadrants, as shown in Fig-
ure 2. If two or more quadrants were involved
by the lesion, we recorded all. The shape of
the lesion was divided into round to oval and
irregular. The size of the lesion was measured
at its greatest diameter. To differentiate from
simple inflammation, mastoid involvement
was considered to be present when the le-
sion in the mastoid antrum was continuous
with the middle ear lesion. CT staging was
also determined using the Potsic classifica-
tion."

Research ethics standards compliance

This study was approved by the Institu-
tional Review Board at Samsung Medical
Center (IRB no: 2018-08-18-001, date: Oc-
tober 10, 2018), and informed consent was
waived in accordance with the requirements
of a retrospective study.

Statistical analysis

Statistical analysis was performed using
SAS version 9.4 (SAS Institute) and R 4.0.2
(Vienna, Austria;  http://www.R-project.
org/). Wilcoxon’s rank sum test was used to
compare the age and size between the CCC
and OCC groups. The chi-square test was
used for comparing the gender distribu-
tion, shape, location, presence of ossicular

Table 1. Potsic staging for congenital cholesteatoma''

Stage Description

| Single quadrant: no ossicular involvement or mastoid extension

] Multiple quadrants: no ossicular involvement or mastoid extension

1] . . .
disease; no mastoid extension

Ossicular involvement: includes erosion of ossicles and surgical removal for eradication of

v Mastoid extension (regardless of findings elsewhere)

Congenital cholesteatomas of the middle ear - 1 81



Jan 1999 —Feb 2017,
109 patients with surgically proved
CC in our institution

102 patients with preoperative CT
scan

80 patients were enrolled

Exclusions

7 patients without preoperative CT

20 patients with insufficient medical records

2 patients with recurrent disease after surgery

Figure 1. Flowchart of patient enrollment. CC, congenital cholesteatoma; CT, computed tomography.

Figure 2. Schematic showing four quadrants of the tympanic cavity. We referred to the handle of the malleus
(arrow) and divided the tympanic cavity into four quadrants, including anterosuperior (AS), posterosuperior
(PS), anteroinferior (Al), and posteroinferior (Pl) quadrants.

erosion, presence of mastoid inflammation,
and presence of labyrinthine fistula between
the two groups. Agreement on the CT and
surgical stages was evaluated using Cohen’s
weighted kappa. A k value <0.20 indicated
positive but poor agreement; 0.21-0.40, fair
agreement; 0.41-0.60, moderate agreement;
0.61-0.80, good agreement; and >0.81, ex-
cellent agreement. The statistical differences
in CT and surgical stages between CCCs and
OCCs were evaluated using Fisher's exact
test with the permutation method for mul-
tiple comparisons. For all statistical analysis,

P < 0.05 was considered statistically signifi-
cant.

Results

Comparison of demographic data between
open- and closed-type congenital choleste-
atomas

Overall, 80 patients had 81 lesions, in-
cluding 43 CCCs and 38 OCCs (Table 2). One
patient had two separate lesions in one ear,
both of which were OCCs; all other patients
had one lesion each. Males were affected
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more frequently than females in both groups
(32 males and 11 females in the CCC group
and 29 males and eight females in the OCC
group), but there was no statistically signif-
icant difference between the two groups (P
=0.631). The ages of the OCC group (median
age: 5 years; range: 2-38 years) were statis-
tically significantly older than those of the
CCC group (median age: 3 years; range: 1-16
years) (P < 0.001). The median time interval
between CT examination and surgery was 29
days (range: 8-555 days) in the CCC group
and 32 days (range: 1-322 days) in the OCC
group, which, based on the Wilcoxon rank
sum test, was not statistically significantly
different (P=0.529).

Comparison of computed tomography
findings between open- and closed-type
congenital cholesteatomas

The CT features of CCCs and OCCs are
summarized in Table 2, with typical cases
presented in Figures 3 and 4. The OCCs were
statistically significantly larger than the CCCs
(median: 6.70 mm vs. 3.15 mm; P < 0.001).
While 28 (65.1%) of 43 CCCs were round or
oval in shape, 36 (94.7%) of 38 OCCs had an
irregular shape (P < 0.001). The anterosupe-
rior quadrant [32/43 (74.4%)] was the most
common site involved in CCCs, followed by
the posterosuperior [12/43 (27.9%)], antero-
inferior [5/43 (11.6%)], and posteroinferior
[5/43 (11.6%)] quadrants, whereas the pos-
terosuperior quadrant [26/38 (68.4%)] was
most commonly involved in OCCs, followed
by the anterosuperior [25/38 (65.8%)], an-
teroinferior [14/38 (36.8%)], and postero-
inferior [11/38 (28.9%)] quadrants. Among
these, involvement of the posterosuperior
and anteroinferior quadrants was statistically
significantly greater in OCCs than in CCCs (P
< 0.001 and P = 0.008, respectively). The de-
tailed sites involved in CCCs and OCCs are fur-
ther characterized in Table 3. Compared with
CCCs, OCCs more frequently involved multi-
ple quadrants of the tympanic cavity, which
was statistically significantly different (P <
0.001). While 36 (83.7%) of 43 CCCs involved
a single quadrant, with the anterosuperior
quadrant being most frequently involved in
27 cases, only 16 (42.1%) of 38 OCCs involved
a single quadrant, with the posterosuperior
quadrant being most frequently involved in
eight cases. In the remaining seven (16.3%)
of 43 CCCs and 22 (57.9%) of 38 OCCs, two or
more quadrants were involved in the lesion.
Involvement of the mastoid antrum was sta-
tistically significantly greater in OCCs than
in CCCs [9/38 (23.7%) OCCs vs. 2/43 (4.5%)
CCCs; P=0.013]. In all 11 cases with mastoid
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Table 2. Demographic data and computed tomography features of closed- and open-
type cholesteatomas

Closed-type Open-type cholesteatoma P value
cholesteatoma (n =43 in (n=38in 37 patients)

43 patients)
Sex
Male 32 29
Female 11 8 0631
Age, yr
Median [IQR]/range 3[2.4]/1-16 5[3.91/2-38 <0.001
Time interval between CT and surgery, days
Median [IQR]/range 29[18.42]/8-555 32[19.62]/1-322 0.529
Size, mm
Median [IQR]/range 3.15[2.60,4.42]/1.1-22.0  6.70[4.78,10.07]/2.2-35.7  <0.001
Shape
Round to oval 28 (65.1%) 2(5.3%)
Irregular 15 (34.9%) 36 (94.7%) <0001
Location
Anterosuperior 32 (74.4%) 25 (65.8%) 0.396
Posterosuperior 12 (27.9%) 26 (68.4%) <0.001
Anteroinferior 5(11.6%) 14 (36.8%) 0.008
Posteroinferior 5(11.6%) 11 (29.0%) 0.051
Mastoid involvement 2 (4.7%) 9 (23.7%) 0.013
Ossicular erosion 6 (14.0%) 21 (55.3%) <0.001
Labyrinthine fistula 1(2.3%) 1(2.6%) 0.929

IQR, interquartile range; CT, computed tomography.

Figure 3. Typical examples of closed-type congenital cholesteatomas (CCCs). (a, b) Potsic stage | CCC in
a 3-year-old boy. Axial (a) and coronal (b) computed tomography (CT) scans show a small well-defined
round nodule (white arrows) confined to the anterosuperior quadrant of the right middle ear, anterior and
superior to the handle of the malleus (open arrow in a), without evidence of ossicular erosion. Posterior to
the handle of the malleus lies the long process of the incus (arrowhead in a). (¢, d) Potsic stage Il CCCin a
3-year-old boy. Axial (c) and coronal (d) CT scans show a well-defined ovoid mass (arrows) located in the
posterosuperior and posteroinferior quadrants of the left middle ear, posterior to the long process of the
incus (arrowhead) without evidence of ossicular erosion or mastoid involvement. Open arrow indicates the
handle of the malleus.

involvement, the posterosuperior quadrant
of the middle ear was also involved. The
rate of ossicular erosion was also statistical-
ly significantly greater in OCCs than in CCCs
[21/38 (55.3%) OCCs vs. 6/43 (14.0%) CCCs; P
< 0.001]. The incus, especially its distal long
process, was most commonly affected in all
27 cases with ossicular erosion, followed by
the stapes in 18 cases and the malleus in four
cases. Two or more ossicles were eroded in
16 of 21 OCCs and three of six CCCs. Labyrin-
thine fistula was present in one (2.3%) of 43
CCCs and one (2.6%) of 38 OCCs, with no sta-
tistically significant difference between the
two groups (P = 0.929). The former occurred
at the superior semicircular canal and the lat-
terinvolved the basal turn of the cochlea and
the lateral and superior semicircular canals.

Comparison of computed tomography and
surgical stages between open- and closed-
type congenital cholesteatomas

The results of the CT and surgical stages
of CCs based on the Potsic classification are
summarized in Table 4. At surgery, 81 CCs
were determined as stage | in 44 (54.3%),
stage llin nine (11.1%), stage Il in 18 (22.2%),
and stage IV in 10 (12.3%). Of all 81 CCs,
the CT stage accorded well with the surgi-
cal stage in 65 cases (80.2%), including 37
(84.1%) of 44 stage | CCs, three (33.3%) of
nine stage Il CCs, 17 (94.4%) of 18 stage llI
CCs, and eight (80.0%) of 10 stage IV CCs. In
the remaining 16 cases, the CT stage mis-
matched with the surgical stage, including
underestimation and overestimation in eight
cases (9.9%) each (Table 5). The eight cases of
underestimation included six cases of stage |
at CT, all of which proved to be stage Il at sur-
gery. The remaining one case of stage | and
one case of stage Il at CT proved to be stage
IV at surgery (Figure 53, b). The eight cases of
overestimation included five cases of stage |l
and two cases of stage IV at CT, all of which
proved to be stage | at surgery (Figure 5c,
d). The remaining one case of stage IV at CT
proved to be stage Il at surgery.

Overall agreement between the CT and
surgical stages was good, with a k value of
0.77 (Cl: 0.64-0.89) based on Cohen’s weight-
ed kappa. When 43 CCCs and 38 OCCs were
analyzed separately, good agreement was
also found between the CT and surgical
stages in both groups, with k values of 0.69
[confidence interval (Cl): 0.43-0.94] and 0.73
(Cl: 0.55-0.91), respectively, with the k val-
ues not statistically significantly different (P
= 0.922). Compared with CCCs, both the CT
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and surgical stages of OCCs were statistically
significantly higher when using Fisher’s exact
test (P < 0.001).

Discussion

The importance of preoperative discrim-
ination between CCCs and OCCs lies in the

Figure 4. Typical examples of open-type congenital cholesteatomas (OCCs). (a, b) Potsic stage Il OCCin an
11-year-old boy. Axial (a) and coronal (b) computed tomography (CT) scans show an irregular mass (white
arrows) in the anterosuperior and posterosuperior quadrants of the left middle ear, anterior and posterior
to the neck of the malleus (open arrow in a). Note that the stapes and the long process of the incus cannot
be localized, which should be seen posterior to the neck of the malleus (open arrow in a) and inferior to the
body of the incus (arrowhead in b), due to erosion by the mass. (c, d) Potsic stage IV OCC in a 12-year-old

boy. Axial (c) and coronal (d) CT scans show a large irregular mass (asterisks) involving the whole parts of

the right middle ear, which causes the ossicular erosion and extends to the mastoid antrum and air cells (M).
The mass also involves the external auditory canal (EC) and causes the erosion of the sigmoid sinus plate

(arrows in c).

Table 3. Detailed sites of involvement by congenital cholesteatomas on computed

tomography

Site of involvement

Single quadrant
AS

PS

Al

PI

Multiple quadrants
Two quadrants
AS+PS

PS+PI

AS+AI

Three quadrants
AS+AI+PS
Al+PS+PI
AS+PS+PI

Four quadrants

Open-type
Closed-type congenital congenital
cholesteatoma (n = 43) cholesteatoma
(n=38)
36 (83.7%) 16 (42.1%)
27 7
5 8
3 1
1 0
7 (16.3%) 22 (57.9%)
3 5
0 4
0 2
0 2
0 2
2 5

AS, anterosuperior; PS, posterosuperior; Al, anteroinferior; Pl, posteroinferior.
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fact that they are different in clinical behav-
ior. Early diagnosis and treatment is critical to
prevent disease progression, particularly in
patients with OCCs.>*¢ However, only a few
studies focusing on differentiation between
CCCs and OCCs using CT have been report-
ed.>213 QOverall, the results of the present
study are in good accordance with those of
the previous studies. Compared with CCCs,
OCCs statistically significantly more com-
monly affected the older age group and were
larger in size and more irregular in shape.**
Invasion of the mastoid antrum and the
erosion of the ossicles were also statistically
significantly greater in OCCs than in CCCs.
These findings can be partly explained by
their different morphology and embryonic
pathogenesis. In contrast to CCCs, which ap-
pear as a well-formed cyst lined by an epithe-
lial membrane, OCCs do not form a discrete
cyst but usually present as a flat epithelium
in the middle ear and thus can avoid early
detection and facilitate the spread of lesions
unnoticed. A higher recurrence rate was also
reported in terms of OCCs.”

The different biological behaviors be-
tween CCCs and OCCs might also be attribut-
ed to their different sites of predilection.
Traditionally, CCs occur most frequently in
the anterosuperior quadrant, then grow into
the posterosuperior quadrant, erode the os-
sicles, and finally invade the mastoid." How-
ever, this situation generally applies to CCCs,
but not to OCCs. In contrast to CCCs, OCCs
are more frequently reported to develop in
the posterosuperior quadrant, which can
delay otoscopic detection to make an early
diagnosis.&1016

Likewise, the present study also revealed
different predilection sites between CCCs
and OCCs. While CCCs most commonly in-
volved the anterosuperior quadrant (74.4%),
followed by the posterosuperior quadrant
(27.9%), OCCs occurred at almost the same
rate in the anterosuperior (65.8%) and pos-
terosuperior (68.4%) quadrants. Of the 36
CCCs that were confined to a single quad-
rant, the anterosuperior quadrant was the
predominant site of involvement in 27 cases,
whereas the posterosuperior quadrant was
much less commonly involved, with only five
cases. In contrast, of the 16 OCCs that were
confined to a single quadrant, eight cases in-
volved the posterosuperior quadrant, where-
as seven cases involved the anterosuperior
quadrant.

There have been reports on the eth-
nic differences in the predilection sites of
CCs between Asian and Western popula-
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Table 4. Computed tomography and surgical stages of congenital cholesteatoma based on Potsic staging

Surgical stage Computed tomography stage

| I 11} v fotal
I 37 (30/7) 5(1/4) 0 (0/0) 2(1/1) 44 (32/12)
Il 6 (5/1) 3(0/3) 0 (0/0) 0(0/0) 9 (5/4)
1] 0 (0/0) 0 (0/0) 17 (5/12) 1(0/1) 18 (5/13)
vV 1(0/1) 0 (0/0) 1(0/1) 8(1/7) 10 (1/9)
Total 44 (35/9) 8(1/7) 18(5/13) 11(2/9) 81 (43/38)

The numbers in parentheses are number of closed-type congenital cholesteatoma/number of open-type congenital cholesteatoma.

Table 5. Discrepant cases between computed tomography and surgical stages

Computed tomography stage Surgical stage

Underestimation (n=8)

6 | Il
1 | \%
1 1] \%

Overestimation (n=8)

5 Il |
2 vV |
1 IV 1]

Figure 5. Examples of mismatch of Potsic stage between computed tomography (CT) and surgery. (a, b) A
case of underestimation in a 9-year-old boy with open-type congenital cholesteatoma. Axial (a) and coronal
(b) CT scans show an irregular mass (arrows) in the anterosuperior quadrant of the right middle ear without
evidence of ossicular erosion or mastoid involvement, leading to stage | determined at CT. At surgery,
however, a small sac of cholesteatoma was also found in the mastoid antrum, which resulted in surgical
stage IV. (c, d) A case of overestimation in a 6-year-old boy with open-type congenital cholesteatoma.
Axial CT scans show an irregular mass (black arrows in c) in the anterosuperior, posterosuperior, and
anteroinferior (not shown) quadrants of the left middle ear, apparently extending to the mastoid antrum
without evidence of the ossicular erosion, which led to stage IV determined at CT. However, surgery found
that the cholesteatoma was limited only to the anterosuperior quadrant, with the other parts of the middle
ear and mastoid antrum being occupied by the granulation tissue, which resulted in surgical stage I. The
open arrow in c indicates the handle of the malleus.

tions.>67191317 According to a meta-analysis
reported by Hidaka et al’, the overall esti-
mate of anterosuperior quadrant involve-
ment was smaller than that of postero-
superior quadrant involvement in Asian
populations (0.54 vs. 0.69), compared with
Western populations (0.76 vs. 0.59). We have
no clear explanation for these racial differ-
ences. It may simply result from the different
timing of detection in different studies, as
there are recent reports showing the antero-
superior quadrant to be the most common
site of early CCs in Asian populations.>”' The
ethnic difference may also be attributed to
different genetic affinity between races.

The staging system proposed by Potsic
et al.’® essentially depends on the disease
extent and is reported to correlate well with
the disease severity and outcome prediction.
The authors demonstrated that the higher
the stage is, the higher the rate of residual
disease and the worse the postoperative
hearing.*'"'8 In addition, cases with early di-
agnosis were likely to be confined to a single
quadrant, whereas cases with delayed diag-
nosis were more likely to involve multiple
sites.’® Based on 71 patients with CCs, Takagi
et al®reported that the preferred surgical ap-
proaches and types of tympanoplasty were
different according to the different stages of
CCs. According to the authors, the majority
of CCs in Potsic stages | and Il could be re-
moved using a transcanal approach, whereas
most CCs in Potsic stages llland IV are treated
by a planned two-stage operation or a canal
wall-down procedure.?Likewise, Yamatodani
et al.” reported that multi-stage procedures
were increasingly needed for higher-stage
CCs, with a trend toward a higher rate of
residual disease and a lower rate of hearing
improvement. The authors also observed
a greater proportion of OCCs in advanced
cases. Based on the accurate preoperative
staging, less invasive treatment can be per-
formed for CCs in the early stage, as Lee et
al."” applied minimally invasive transcanal
myringotomy in patients with CCs in Pot-
sic stages | and Il, with a recurrence rate of
13.8%.
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In the present study, CT staging accorded
well with surgical staging [80.2% (65/81)],
with good overall agreement (x: 0.77). Our
results are comparable to those obtained by
Choi et al.’, who reported an alignment be-
tween the preoperative CT and surgical stag-
es in 70.4% (50/71). In the present study, the
CT and surgical stages also revealed good
agreement even when CCCs and OCCs were
analyzed separately. As expected, both the
CT and surgical stages of OCCs were statisti-
cally significantly higher than those of CCCs.
The significance of the results of the present
study is that the type and stage of CCs can be
predicted on CT scans before surgery, which
can help the surgeon choose the best treat-
ment option to achieve the best clinical out-
come for the patients.

Despite overall good agreement between
the CT and surgical stages, there were 16
discrepant cases, including eight cases of un-
derestimation and eight of overestimation
(Table 5). Of these 16 cases, 11 occurred in a
combination of stage | at CT and stage Il at
surgery (n = 6) or stage Il at CT and stage | at
surgery (n = 5). These 11 cases of mismatch
stemmed from the differences in the number
of the involved quadrants determined by CT
and surgery, and would not have a signifi-
cant impact on the patients’ treatment. The
remaining five cases of mismatch between
CT and surgery were related to CT interpre-
tation of the presence or absence of mastoid
involvement, because differentiation be-
tween mastoid inflammation and mastoid in-
volvement by CCs can often be difficult. Two
cases of stage IV at surgery were interpreted
as stage | and stage Il at CT, respectively. In
contrast, three cases of stage IV at CT were
finally proven to be stage | in two cases and
stage lll in one case.

The present study has several limitations.
First, this is a retrospective study in which
an exact 1:1 CT and surgical correlation is
limited. Second, the mean time interval be-
tween CT examination and surgery was rel-
atively long (mean: 54 days; range: 1-555
days), meaning the possibility of the interval
change of the lesion could not be excluded.
Third, we did not analyze the clinical course
of the patients, such as the type of surgery,
hearing outcome, and disease recurrence.

Information on the clinical outcome would
be helpful for further understanding the im-
portance of preoperative CT examination for
differentiating between CCCs and OCCs, as
well as its staging workup.

In conclusion, CCs of the middle ear are
classified as CCCs and OCCs, which differ in
terms of morphology and clinical course. By
providing valuable information on the mor-
phology and extent of the lesions, CT is use-
ful not only for accurate preoperative deter-
mination of the type of CCs but also accurate
prediction of lesion staging, which should be
important to preparing optimal treatment
plans.
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A retrospective evaluation of the potential of ChatGPT in the accurate
diagnosis of acute stroke

Beyza Nur Kuzan'

Ismail Mese? PURPOSE

Servan Ya§ar3 Stroke is a neurological emergency requiring rapid, accurate diagnosis to prevent severe conse-
quences. Early diagnosis is crucial for reducing morbidity and mortality. Artificial intelligence (Al)
diagnosis support tools, such as Chat Generative Pre-trained Transformer (ChatGPT), offer rapid
diagnostic advantages. This study assesses ChatGPT’s accuracy in interpreting diffusion-weighted
TKartal Dr. Lutfi Kirdar City Hospital, Clinic of imaging (DWI) for acute stroke diagnosis.

Radiology, istanbul, Tiirkiye

Taha Yusuf Kuzan3

2(Jskiidar State Hospital, Clinic of Radiology, Istanbul, METHODS
Turkiye A retrospective analysis was conducted to identify the presence of stroke using DWI and apparent

diffusion coefficient (ADC) map images. Patients aged >18 years who exhibited diffusion restriction
and had a clinically explainable condition were included in the study. Patients with artifacts that
affected image homogeneity, accuracy, and clarity, as well as those who had undergone previous
surgery or had a history of stroke, were excluded from the study. ChatGPT was asked four consec-
utive questions regarding the identification of the magnetic resonance imaging (MRI) sequence,
the demonstration of diffusion restriction on the ADC map after sequence recognition, and the
identification of hemispheres and specific lobes. Each question was repeated 10 times to ensure
consistency. Senior radiologists subsequently verified the accuracy of ChatGPT's responses, classi-
fying them as either correct or incorrect. We assumed a response to be incorrect if it was partially
correct or suggested multiple answers. These responses were systematically recorded. We also re-
corded non-responses from ChatGPT-4V when it failed to provide an answer to a query. We as-
sessed ChatGPT-4V's performance by calculating the number and percentage of correct responses,
incorrect responses, and non-responses across all images and questions, a metric known as “accura-
cy!” ChatGPT-4V was considered successful if it answered >80% of the examples correctly.

3Sancaktepe Sehit Prof. Dr. ilhan Varank Training
and Research Hospital, Clinic of Radiology, istanbul,
Turkiye

RESULTS

A total of 530 diffusion MR, of which 266 were stroke images and 264 were normal, were evalu-
ated in the study. For the initial query identifying MRI sequence type, ChatGPT-4V's accuracy was
88.3% for stroke and 90.1% for normal images. For detecting diffusion restriction, ChatGPT-4V had
an accuracy of 79.5% for stroke images, with a 15% false positive rate for normal images. Regarding
identifying the brain or cerebellar hemisphere involved, ChatGPT-4V correctly identified the hemi-
sphere in 26.2% of stroke images. For identifying the specific brain lobe or cerebellar area affected,
ChatGPT-4V had a 20.4% accuracy for stroke images. The diagnostic sensitivity of ChatGPT-4V in
acute stroke was found to be 79.57%, with a specificity of 84.87%, a positive predictive value of
83.86%, a negative predictive value of 80.80%, and a diagnostic odds ratio of 21.86.

CONCLUSION

Despite limitations, ChatGPT shows potential as a supportive tool for healthcare professionals in
Corresponding author: Beyza Nur Kuzan interpreting diffusion examinations in stroke cases, where timely diagnosis is critical.
E-mail: drbeyzauzun@hotmail.com

CLINICAL SIGNIFICANCE

ChatGPT can play an important role in various aspects of stroke cases, such as risk assessment, early
diagnosis, and treatment planning.
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rtificial intelligence (Al) is a set of ap-
Aplications that can be used in almost

any field to support human power
and decision-making processes. Within Al,
there are several subcategories, including
deep learning, machine learning (ML), and
generative Al, with the latter gaining signif-
icant popularity recently. The historical pro-
gression of Al, specifically generative and
multimodal Al, can be traced back to the
early 20™ century with the development of
the Markov chain model in 1906, which laid
the foundation for probabilistic methods in
Al Significant advancements occurred in
the mid-20™ century with the rise of natu-
ral language processing and ML, leading to
early chatbots, such as ELIZA, in the 1960s.?
Notable milestones include the Turing test
in 1950, which set a benchmark for machine
intelligence, and the creation of rule-based
chatbots in the 1960s and 1970s." The inte-
gration of deep learning in the early 2000s
led to the development of large language
models (LLMs), such as OpenAl’s Chat Gen-
erative Pre-trained Transformer (ChatGPT)
and Google’s Bard, which utilize transformer
neural network architectures. These sophisti-
cated conversational agents are advanced Al
systems trained on extensive datasets. These
models predict the next word in a sentence,
enabling them to generate coherent and
contextually relevant text based on the input
they receive.’

The field of radiology is undergoing a
significant transformation with the intro-
duction of Al. This transformation includes
Al-powered tools and plug-ins that can an-
alyze large multi-view datasets, identifying
patterns that are not easily detected by the
human eye. Al algorithms can also assist ra-
diologists by automating routine tasks.*
These innovations have led to improved
image quality, reductions in scan times, and
the development of predictive analytics for
patient outcomes. Another critical aspect of
this Al-driven transformation is the ability to
personalize patient care.®

* Chat Generative Pre-trained Transformer
(ChatGPT ) is a tool that can potentially as-
sist healthcare professionals in diagnosing
diseases.

* Although ChatGPT offers rapid and com-
prehensive responses, as well as convenient
accessibility, it also has certain drawbacks,
including sometimes inconsistent outputs
and the necessity for supervision.

* The findings of this study indicate that,
despite its current limitations, ChatGPT
demonstrated a 79.5% success rate in deter-
mining diffusion restriction in stroke cases.

The role of Al becomes even more critical
in situations where the timing of diagnosis af-
fects morbidity and mortality, such as stroke
cases. Rapid imaging is crucial in stroke cas-
es because timely intervention can signifi-
cantly reduce the risk of long-term disability
and improve patient outcomes.® Al creates
a diagnostic advantage in these emergency
cases due to its easy accessibility and rapid
decision-making features.’” It offers a promis-
ing solution to bridge the gap, particularly in
cases where the limited availability of radiol-
ogists presents a significant challenge.?

In November 2023, OpenAl unveiled a
groundbreaking update to ChatGPT with the
introduction of its Generative Pre-trained
Transformer 4, enhanced with vision capabil-
ities, known as GPT-4V.>'° This update trans-
forms ChatGPT from merely a tool for textual
analysis into a versatile assistant capable of
handling a wide range of tasks that require
an understanding of both language and vi-
sual data. In arecent article by Kim et al.”’, the
authors used ChatGPT-4V to interpret radiol-
ogy examinations, despite it scoring lower
than the students. In another article by Deng
et al.’?, it was found to have limited accuracy
and precision, inconsistent performance, and
a tendency to “hallucinate”. Despite these
reports, the use of ChatGPT-4V in radiology,
especially in stroke imaging, remains largely
unexplored. Because of its rapid interpreta-
tion and practical accessibility, the use of
ChatGPT in the diagnosis of stroke should
be investigated in large case series. Clinical
application and dissemination of ChatGPT
by verifying its diagnostic performance and
suitability for stroke diagnosis will develop
this field.

In this study, we aim to evaluate the di-
agnostic accuracy and effectiveness of inter-
preting diffusion-weighted imaging (DWI)
using ChatGPT in the diagnosis of acute
stroke. Our method involves a structured
approach to posing specific questions of
varying difficulty, each designed to address
different aspects of image interpretation in
stroke imaging, from identifying the mag-
netic resonance imaging (MRI) sequence to
pinpointing the specific location and lobe of
the acute infarct.

Methods

Patient selection

This study was conducted in accordance
with ethical standards and was approved
by the Institutional Review Board of San-
caktepe Sehit Prof. Dr. ilhan Varank Tran-
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ing and Research Hospital (approval num-
ber: 33/14.02.2024). The requirement for
informed written consent was waived due to
the retrospective nature of the study.

A retrospective analysis was conducted
on DWI and apparent diffusion coefficient
(ADC) maps acquired between January 2022
and January 2024 using the institutional Pic-
ture Archiving and Communication System
(Simplex PACS, Ankara, Tlirkiye). The patients
presenting with acute stroke symptoms
(weakness in the half of the body, difficulty in
understanding and speaking, facial asymme-
try, diplopia, and vision loss) were evaluated
in the emergency unit, and those in which
stroke was considered in the preliminary di-
agnosis were imaged with diffusion MRI. In
patients whose symptoms regressed during
24-hour observation, the diagnosis of tran-
sient ischemic attack (TIA) was considered,
and these patients were not included in the
study. The inclusion criteria were adults aged
>18 years who had diffusion restriction and
explained the clinical condition. Exclusion
criteria were the presence of image artifacts
that could affect the interpretation of the
scans, previous history of stroke or neuro-
surgical intervention, pediatric patients aged
<18 years, or lacunar infarcts <1 cm; patients
diagnosed with TIA were excluded for the
clarity, reliability, and homogeneity of the
analyzed data. Images of patients without
diffusion restriction and stroke symptoms
in diffusion-weighted examinations were in-
cluded in the study as normal images. In the
study, 530 images, 266 stroke images, and
264 normal images were evaluated.

Radiologist assessment

All images were obtained using two iden-
tical 1.5T MRI (GE Healthcare SIGNA™) de-
vices of the same model. DWI and ADC map
images of patients meeting the inclusion cri-
teria were evaluated independently by two
radiologists with 8 and 9 years of experience
in this field. The assessments were conducted
by consensus, with both radiologists collabo-
rating to determine the presence or absence
of diffusion restriction. This consensus-based
approach was performed to provide a re-
liable reference for ChatGPT evaluations.
The imaging parameters were standardized
across all scans according to the MRI proto-
col, including a b value of 0-1,000 s/mm?, TR/
TE of 5,000/60 ms, a slice thickness of 5 mm,
and a matrix size of 128 x 128. A total of 530
images were included in the study, compris-
ing 264 images from patients with normal
DWI and ADC findings and 266 images from
patients diagnosed with acute stroke based

Kuzan et al.



on DWI scans, exhibiting diffusion restriction
in the DWI and ADC sequences (Figure 1).

ChatGPT-4V assessment of
sion-weighted imaging scans

diffu-

The selection criteria for MRI slices focused
on those exhibiting the most representative
areas of diffusion restriction. Random slices
were selected if no diffusion restriction was
present, prioritizing those with the highest
probability of infarction, particularly in the
middle cerebral artery region. High-quality
images were chosen to ensure clarity in inter-
pretation. The images used for input were in
JPEG format, with a file size of approximate-
ly 500 kB each and a resolution of 512 x 512
pixels.

ChatGPT-4V was utilized to interpret the
DWI scans. ChatGPT-4V can be influenced by
file names or any hinted answers placed as
textin the image, as it seems to draw context
from them when generating responses.'
Therefore, before starting, all information was
deleted from the text and the image names
were standardized, starting sequentially (Fig-
ure 2). DWI images were anonymized before
being uploaded to the ChatGPT platform for
interpretation using standardized prompts.
The questions were asked for each scan,
and prompts were in English, a language in
which the language model demonstrated
high comprehension capacity.”® The four
specific questions posed to ChatGPT-4V
were carefully chosen to evaluate its ability
to interpret DWI scans accurately (Figure 3).
First, ChatGPT-4V was asked to identify the
type of MRI sequence to ensure it correctly
understood the image’s context. Once the
sequence type was identified, an additional
ADC map was provided to check for diffusion
restrictions. The last two questions tested
ChatGPT-4V’s ability to discern detailed an-
atomical structures and spatial orientation
within the brain, which are crucial for precise
medical interpretation.

Each question was asked 10 times for
every image to ensure consistency in re-
sponses. Although a larger number of iter-
ations could provide more comprehensive
insights, it was impractical within the scope
of the study. The session was restarted after
each set of questions to ensure that ChatGPT
was not influenced by prior interactions. The
accuracy of ChatGPT’s responses was subse-
quently verified by senior radiologists in a
binary manner: either correct or incorrect. If
aresponse was partially correct or suggested
multiple answers, it was assumed to be incor-
rect. These responses were systematically re-

corded. If ChatGPT-4V did not provide an an-
swer to a query, this non-response was also
recorded. The performance of ChatGPT-4V
was assessed using the number and percent-
age of correct responses, incorrect respons-
es, and non-responses across all images and
questions, referred to as “accuracy” (Figures
4-7). Due to consistency concerns, ChatGPT
4V was deemed successful only if it answered
>80% of the examples correctly and was al-
lowed to move on to the next question. If

this threshold was not met, subsequent
questions would not be asked, ensuring that
only complete and accurate analyses were
recorded. The success rate was calculated by
dividing the number of correct answers by
the total number of answers given.

Statistical analysis

The primary outcome measure was the
accuracy and success rate of ChatGPT's re-

1082 images

(Between January 2022- January 2024)

552 excluded (no DWI, no ADC, image artifacts,
history of previous strokes or neurosurgical

interventions, pediatric cases, conventional MR
examinations with no stroke symptoms )

530 images

* Brain diffusion weighted imaging (DWTI)
within 24 hours after symptom onset

Image Review

l

l

‘ 266 stroke images ‘

‘ 264 normal images ‘

l

ChatGPT analysis
(Questions 1-4)

Figure 1. Flowchart of the study population and process. ChatGPT, Chat Generative Pre-trained Transformer.

. You

Could you help me identify the MRI sequence type used in this image?

@ ChatGPT

The MRI sequence used in the image you provided is a Diffusion-Weighted Imaging (DWI) sequence.

You can identify it as such because of the bright appearance in the central part of the brain, which is

typical in DWI when there's restricted diffusion of water molecules, often indicative of acute ischemic

stroke or other similar conditions. Additionally, the information in the left upper corner of the image

includes "DIFFUZYON" which confirms that it is indeed a diffusion-weighted sequence.

Figure 2. ChatGPT-4V can be influenced by filenames and image text as clues in interpretation. ChatGPT,

Chat Generative Pre-trained Transformer.

ChatGPT in acute stroke diagnosis « 1 89



Figure 3. Diagram of question texts and diffusion images asked to ChatGPT. ChatGPT, Chat Generative Pre-

&

QUESTION 1 Could you help me identify the MRI sequence type used in this image?

I have now uploaded an Apparent Diffusion Coefficient map
QUESTION 2 corresponding to the same scan. Could you analyze this image to assess
if there is any evidence of diffusion restriction?

\ 4

After analyzing the ADC map, can you now help identify which
QUESTION 3 hemisphere of the brain or the cerebellum is involved based on the
images I've uploaded?

4

Now that we've identified the hemisphere or the cerebellum involved,
QUESTION 4 could you help determine the specific lobe of the brain or region of
the cerebellum.

trained Transformer.

sponses. The true positive (N,) and true
negative (N,) are the number of patients
correctly diagnosed as acute stroke and nor-
mal, respectively. In addition, normal cases
wrongly diagnosed as stroke and incorrectly
diagnosed stroke cases are assigned as (N,,)
and (N,,), respectively. The sensitivity, spec-
ificity, positive predictive value, negative
predictive value, and accuracy of ChatGPT in
the diagnosis of acute stroke were calculat-
ed.The SPSS 23.0 (IBM Inc., Armonk, NY, USA)
software package was used for statistical
analysis.

Results

In this retrospective study, the perfor-
mance of ChatGPT-4V in interpreting DWI
scans and ADC maps for a total of 530 im-
ages, including 266 stroke images and 264
normal images, was evaluated with various
parameters. The results are divided into re-
sponses to four specific questions aimed
at analyzing the capability of ChatGPT-4V
in identifying critical aspects of DWI scans.
Correct interpretations, incorrect interpre-
tations, no responses, and success rates are
shown inTable 1.

For the first question regarding the identi-
fication of the MRI sequence type, ChatGPT-
4V accurately identified the MRI sequence
in 235 images, resulting in an 88.3% suc-
cess rate in the group of 266 stroke images.
Overall, out of 2,660 interpretations, 2,098

Table 1. Performance analysis of ChatGPT-4V in interpreting diffusion-weighted imaging scans and apparent diffusion coefficient maps for
stroke diagnosis

Group

Correct interpretations

Incorrect interpretations

No response Success rate*

Question 1: Identification of the magnetic resonance imaging sequence type

Stroke

(n =266)

Normal images

Images 78.9% (2,098/2,660)

(n = 264) 81.4% (2,148/2,640)
(T: t_a IS';?,?ges 79.7% (4,246/5,300)
Question 2: Identification of diffusion restriction

ok yages 68.3% (1,605/2350)
[\:loin;g;mages 80.2% (1,909/2,380)
Total images

(n=473) 74.4% (3,514/4,730)

Question 3: The hemisphere of the brain or cerebellum involved

Stroke

(n=187)

images 32.4% (605/1,870)

Question 4: The specific lobe of the brain or region of the cerebellum affected

Stroke

(n=49)

images 35.19% (172/490)

11.4% (305/2,660)

9.2% (244/2,640)

10.4% (549/5,300)

14.6% (343/2,350)

13.5% (320/2,380)

14.0% (663/4,730)

53.5% (1,002/1,870)

52.0% (255/490)

9.7% (257/2,660) 88.3%
9.4% (248/2,640) 90.1%
9.5% (505/5,300) 89.2%
17.1% (402/2,350) 79.6%
6.3% (151/2,380) 84.9%
11.7% (553/4,730) 82.2%
14.1% (263/1,870) 26.2%

12.9% (63/490) 20.4%

*, achieved by attaining =80% correct interpretations in responded queries for each case; ChatGPT, Chat Generative Pre-trained Transformer.
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were correct (78.9%), 257 did not receive
a response (9.7%), and 305 were incorrect
(11.4%). Similarly, in the group of 264 images
with normal DWI findings, ChatGPT-4V suc-
cessfully identified the sequence in 238 im-
ages (90.1%). Out of 2,640 interpretations for
this group, 2,148 were correct (81.4%), 248
received no response (9.4%), and 244 were
incorrect (9.2%).

. You

In the second question concerning
the identification of diffusion restriction,
ChatGPT-4V successfully identified diffu-
sion restriction in 187 out of 235 stroke im-
ages, indicating a 79.5% success rate for
this subgroup. Out of 2,350 interpretations,
1,605 were correct (68.3%), 402 received no
response (17.1%), and 343 were incorrect
(14.6%). Conversely, ChatGPT-4V incorrect-

I have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan.
Could you analyze this image to assess if there is any evidence of diffusion restriction?

@ ChatGPT

The image you've provided is an Apparent Diffusion Coefficient (ADC) map, which is commonly used in
conjunction with DWI1 (Diffusion Weighted Imaging) sequences. In ADC maps, areas of restricted

diffusion typically appear darker. This contrast is because ADC maps guantify the diffusion of water

molecules: lower ADC values (darker areas) indicate reduced water molecule mobility, which is often

asscciated with pathological conditions such as acute ischemic stroke.

From the image, it appears there are darker regions within the brain, suggesting possible areas of
restricted diffusion. This could indicate an acute ischemic event or other types of brain pathology where

diffusion is impaired. However, a definitive interpretation and diagnosis should involve a comprehensive

a evaluation by a medical professional, taking into account clinical findings and other diagnostic tests.

o You

| have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan
Could you analyze this image to assess if there is any evidence of diffusion restriction?

@ ChatGPT

This Apparent Diffusion Coefficient (ADC) map corresponds to the previously discussed Diffusion

Weighted Imaging (DWI) scans. On ADC maps, areas without restricted diffusion typically appear

normal or bright, indicating the normal mobility of water molecules within the brain tissue.

In this ADC map, there appears to be no significant dark areas, which suggests that there is no evidence

of restricted diffusion in the brain. This would imply that there are no acute ischemic changes or other
pathologies that significantly impair the diffusion of water molecules in the areas visible in this scan.

This interpretation must be confirmed with clinical correlation and comprehensive analysis to rule out

b any pathology not immediately evident on the ADC map.

Figure 4. ChatGPT's interpretations (a, b) in apparent diffusion coefficient images without diffusion
restriction for acute stroke. ChatGPT, Chat Generative Pre-trained Transformer.

ly identified diffusion restriction in 36 out
of 238 normal images (15.1%), with 1,909
correct interpretations (indicating no diffu-
sion restriction, 80.2%), 151 non-responses
(6.3%), and 320 incorrect interpretations
(13.5%).

For the third question, regarding the
hemisphere of the brain or cerebellum in-
volved, ChatGPT-4V correctly identified the
involved hemisphere in 49 out of 187 stroke
images (26.2%). Out of 1,870 interpretations,
605 were correct (32.4%), 263 did not receive
aresponse (14.1%), and 1,002 were incorrect
(53.5%).

In the final question about the specific
lobe of the brain or region of the cerebellum
affected, ChatGPT-4V accurately identified
the affected region in 10 out of 49 stroke
images (20.4%). Out of 490 interpretations,
172 were correct (35.1%), 63 received no
response (12.9%), and 255 were incorrect
(52.0%). Further analysis revealed that
ChatGPT-4V'’s interpretations were most suc-
cessful for the frontal lobe (33.3%, 3 out of 9)
and parietal lobe (30.0%, 3 out of 10), where-
as its success rates for the temporal and oc-
cipital lobes were lower, at 15.0% (3 out of
20) and 10.0% (1 out of 10), respectively.

The diagnostic performance results ob-
tained by comparing the images of stroke
and normal with ChatGPT are shown in Table
2. Accordingly, 187 true positive interpreta-
tions and 48 false negative interpretations
were made on the diffusion images of 235
stroke images. A total of 202 true negative
interpretations and 38 false positive interpre-
tations were made on the diffusion images
of 238 normal images. Accordingly, the diag-
nostic sensitivity of ChatGPT was calculated
as 79.57%, specificity as 84.87%, positive pre-
dictive value as 83.86%, negative predictive
value as 80.80%, and diagnostic odds ratio as
21.86.

Discussion

The pivotal aspect of this study is the
evaluation of ChatGPT-4V’s ability to inter-
pret DWI scans and ADC maps for stroke
diagnosis. Our investigation reveals that
Al, specifically advanced language models
with enhanced vision capabilities, can con-
tribute to the analysis of medical imaging in
stroke imaging. The detailed analysis showed
ChatGPT-4V’s success in identifying MRI se-
quence types and assessing the presence of
diffusion restriction, illustrating its utility in
basic diagnostic tasks.
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. You
| have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan.
Could you analyze this image to assess if there is any evidence of diffusion restriction?

& ChatGPT

In this Apparent Diffusion Coefficient (ADC) map, areas of restricted diffusion typically appear darker
due to the lower ADC values indicating impeded water molecule movement. From your image, there do
not seem to be prominent dark areas, which suggests no significant evidence of restricted diffusionin
the brain regions shown.

This means there might not be any acute ischemic changes or similar pathologies that significantty
restrict water molecule diffusion in these areas of the brain. However, a complete and accurate
assessment would require a detailed analysis involving a professional radiologist and correlation with
clinical findings.

@ You

| have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan.
Could you analyze this image to assess if there is any evidence of diffusion restriction?
@& ChatGPT
This Apparent Diffusion Coefficient (ADC) map corresponds to the previously discussed Diffusion
Weighted Imaging (DWI1) scan. On an ADC map, areas of restricted diffusion typically appear darker
compared to surrounding brain tissue because lower ADC values indicate decreased water molecule
movement, which is common in acute ischemic strokes and other similar pathologies.

In this image, there is a noticeable dark area in the left frontal region, confirming the evidence of
diffusion restriction suggested by the bright area in the DWI scan. This dark appearance in the ADC
map supports the diagnosis of restricted diffusion, likely indicating an acute ischemic event or similar

patholegy in that region of the brain.

This finding should be interpreted alongside clinical symptoms and possibly further diagnostic testing

to provide a comprehensive evaluation and appropriate management of the condition

Figure 5. ChatGPT's incorrect (a) and correct (b) interpretation of diffusion restriction in acute stroke images.
ChatGPT, Chat Generative Pre-trained Transformer.
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ChatGPT and other general-purpose LLMs
are usually designed to include inherent ran-
domness, which means that their outputs
can vary across multiple runs with the same
prompt. This feature can enhance user en-
gagement by generating more diverse and
dynamic conversations. However, it under-
mines the precision of GPT-4V when inter-
preting medical images.

The potential applications of LLMs, such
as ChatGPT, in radiology are inspiring."
While they can indeed assist radiologists in
interpreting images and providing initial as-
sessments, it is crucial to remember that they
are not infallible.* As with any tool, it has its
limitations and can sometimes provide in-
correct interpretations. The study by Akinci
D’Antonoli et al.”® likely highlights both the
benefits and the challenges of using LLMs in
radiology. Although ChatGPT can give false
interpretations, it tends to assist experts
and give confidence in speeding up certain
tasks.”

The potential clinical effects of incorpo-
rating ChatGPT-4V into radiological practice
could be transformative. In settings where
radiologists are scarce or imaging interpre-
tation needs to be expedited, ChatGPT-4V
could serve as a support tool. This could be
particularly impactful in stroke care, where
prompt diagnosis is essential.

Although there are existing studies on
ChatGPT's role in stroke care, such as “Stroke
care in the ChatGPT era: potential use in early
symptom recognition” by Lam and Au'® and
“exploring the use of ChatGPT in predicting
anterior circulation stroke functional out-
comes after mechanical thrombectomy: a
pilot study” by Pedro et al.””, our study is pi-
oneering in evaluating ChatGPT-4V’s compe-
tence in interpreting stroke images directly.
This lack of precedent underscores the nov-
elty and potential significance of our findings
in the context of Al-assisted diagnostics.

Inthe Chen et al.’® study of large vessel oc-
clusion cases, ChatGPT agreed with the phy-
sician’s decision to perform thrombectomy
in 54.3% of cases. ChatGPT had mathemat-
ical, logical, and misinterpretation errors in
8.8% of cases. Despite the mistakes, ChatGPT
could make nuanced clinical judgments and
perform multilevel reasoning.’® Conversely,
the article by Saenger et al.” highlighted the
diagnostic delay and error caused by misin-
terpretation from ChatGPT. The patient, who
had consulted ChatGPT about his symp-

Kuzan et al.



You
After analyzing the ADC map, can you now help identify which hemisphere of the brain or the
cerebellum is involved based on the images I've uploaded?

© ChatGPT
In the MRl images you've uploaded, the abnormalities are located in the right hemisphere of the brain.
This is evident from the brighter areas in the diffusion-weighted imaging (OWI) scan and the
corresponding darker areas on the apparent diffusion coefficient (ADC) map. These imaging features

suggest restricted diffusion often associated with conditions like acute ischemic strokes.
a

o You

Could you help determine the specific lobe of the brain or region of the cerebellum that is
affected based on the uploaded MRl images?

© ChatGPT
To determine the specific lobe of the brain affected by the abnormalities shown in your MRl images, we

can analyze the regions where changes are visible in both the diffusion-weighted imaging (DWI) and the

apparent diffusion coefficient (ADC) maps.
Based on the images:

+ Location: The abnormalities are primarily seen in the right hemisphere.

« Affected Areas: The bright areas on the DWI and the corresponding dark areas on the ADC map
are primarily located arcund the right frontal and parietal lobes.

« Possible Involvement: The involvement seems to be at the cortical level, predominantly affecting
the gray matter regions of these lobes.

These areas typically suggest a restriction in diffusion, which could be due to acute ischemic changes
or other pathologies like tumors or abscesses affecting those parts of the brain. Given the typical
appearance and location, it is likely an ischemic event, but clinical correlation and further imaging (like a

b

perfusion study or follow-up MRIs) would be crucial for a more definitive diagnosis.

Figure 6. ChatGPT's correct interpretations (a, b) about the location of diffusion restriction in acute stroke
images. ChatGPT, Chat Generative Pre-trained Transformer.

Table 2. Diagnostic performance of diffusion restriction test in stroke and normal patients

toms, had made an underestimation and did
not apply to a healthcare institution. As the
symptoms progressed, the patient was ad-
mitted to the hospital and diagnosed with
a TIA. The author reported that this resulted
in a serious treatment delay and a potentially
life-threatening situation. It was emphasized
that with the widespread use of Al, attention
should be drawn to such risks, and the final
say in the medical decision-making process
should belong to healthcare professionals.™

Notably, ChatGPT-4V demonstrated a
higher success rate in interpreting abnormal-
ities in the frontal and parietal lobes com-
pared with the temporal and occipital lobes.
This variation in success may be attributed
to the distinctiveness of imaging features or
the complexity of the regions involved, sug-
gesting areas for further model training and
improvement.

One challenge highlighted by our study is
the inconsistent interpretation capabilities of
ChatGPT-4V. While showing promise in cer-
tain analytical tasks, its performance varied,
suggesting that although Al can augment
radiological assessments, it currently cannot
replace the nuanced judgment of human ex-
perts.

The study also draws attention to the lack
of transparency in how ChatGPT-4V arrives
at its conclusions, a common limitation in Al
technologies known as the “black box” issue.
This lack of insight into the decision-making
process can be a significant barrier to clinical
adoption, as understanding the rationale be-
hind diagnostic recommendations is crucial
for trust and reliability.

Despite its diagnostic advantages,
ChatGPT is not yet a method that can be used
independently in time-sensitive situations,
such as stroke. The most appropriate use of
ChatGPT is as a diagnostic support algorithm
under the supervision of a radiologist. If
healthcare practitioners utilize ChatGPT, the
results must be verified by the radiologist for
complete and accurate interpretation.

TP N FP FN Sensitivity Specificity PPV NPV Accuracy
Number 187/235 202/238 187/223 202/250 389/473
Percentage 187 202 36 48 79.57% 84.87% 83.86% 80.80% 82.24%
95% ClI 73.85%-84.54% 79.68%-89.18% 79.24%-87.60%  76.48%-84.49%  78.49%-85.58%

TP, true positive; TN, true negative; FP, false positive; FN, false negative; PPV, positive predictive value; NPV, negative predictive value; Cl, confidence interval.
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. You

I have now uploaded an Apparent Diffusion Coafficient map corresponding to the same scan

Could you analyze this image to assess if there is any evidence of diffusion restriction?

I have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan.

To assess if there is evidence of diffusion restriction, I'll analyze the provided ADC map

Could you analyze this image to assess if there is any evidence of diffusion restriction? @ ChatGPT
@ ChatGPT
Upon analyzing the ADC map:
Identification of Diffusion Restriction: In the ADC map, areas of diffusion restriction typically appear
darker
Analysis:
* The ADC map shows an area of lower signal intensity (darker region) in the left temporal lobe. Anslysts

* This suggests diffusion restriction in the left temporal region

Therefore, there is significant evidence of diffusion restriction in the left temporal lobe visible in this

ADC map

values appear darker and

on or high cellularity

* In the ADC map you provided, there do not appear to be significant regions of hypointensity

dark are.

that would indicate restricted diffy

n. This suggests that there is no evidence of

diffusion restriction in the brain regions shown in this image.

s of interest or additional sequences that could aid in a more detailed

I have now uploaded an Apparent Diffusion Coefficient map corresponding to the same scan.
Could you analyze this image to assess if there is any evidence of diffusion restriction?

& ChatGPT

| apologize for any inconvenience. | am not gualified to provide a definitive interpretation of medica

c images. Please consult a radiologist for an expert evaluation and diagnosis.

Figure 7. ChatGPT's correct (a) and incorrect (b) interpretation and non-response (c) about diffusion restriction in acute stroke images. ChatGPT, Chat Generative

Pre-trained Transformer.

The limitations of our study include its ret-
rospective design, the potential for selection
bias in the images used, and the reliance on
a single Al tool for analysis. The evaluation of
ChatGPT'’s performance by a single radiolo-
gist presents certain limitations, particularly
given the potential for ChatGPT to provide
partial or multiple answers. Additionally, not
including lacunar infarcts in the study due to
diagnostic difficulties may have limited the
number of patients. These factors may affect
the generalizability of our findings. Future

studies should aim to expand the dataset,
include prospective analyses, and compare
the performance of ChatGPT-4V with other
Al models and diagnostic tools. Investigating
the integration of Al tools into clinical work-
flows and their impact on patient outcomes
would also be valuable.

In conclusion, despite the current limita-
tions, ChatGPT is a tool with the potential to
assist the radiologist in stroke cases where
diagnosis timing is very important.
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PURPOSE
To evaluate the performance of Microsoft Bing with ChatGPT-4 technology in analyzing abdominal
computed tomography (CT) and magnetic resonance images (MRI).

METHODS

A comparative and descriptive analysis was conducted using the institutional picture archiving and
communication systems. A total of 80 abdominal images (44 CT, 36 MRI) that showed various enti-
ties affecting the abdominal structures were included. Microsoft Bing’s interpretations were com-
pared with the impressions of radiologists in terms of recognition of the imaging modality, identi-
fication of the imaging planes (axial, coronal, and sagittal), sequences (in the case of MRI), contrast
media administration, correct identification of the anatomical region depicted in the image, and
detection of abnormalities.

RESULTS

Microsoft Bing detected that the images were CT scans with 95.4% accuracy (42/44) and that the
images were MRI scans with 86.1% accuracy (31/36). However, it failed to detect one CT image
(2.3%) and misidentified another CT image as an MRI (2.3%). On the other hand, it also misidentified
four MRI as CT images (11.1%) and one as an X-ray (2.7%). Bing achieved an 83.75% success rate
in correctly identifying abdominal regions, with 90% accuracy for CT scans (40/44) and 77.7% for
MRI scans (28/36). Concerning the identification of imaging planes, Bing achieved a success rate of
95.4% for CT images and 83.3% for MRI. Regarding the identification of MRI sequences (T1-weight-
ed and T2-weighted), the success rate was 68.75%. In the identification of the use of contrast media
for CT scans, the success rate was 64.2%. Bing detected abnormalities in 35% of the images but
achieved a correct interpretation rate of 10.7% for the definite diagnosis.

CONCLUSION

While Microsoft Bing, leveraging ChatGPT-4 technology, demonstrates proficiency in basic task
identification on abdominal CT and MRI, its inability to reliably interpret abnormalities highlights
the need for continued refinement to enhance its clinical applicability.

CLINICAL SIGNIFICANCE

The contribution of large language models (LLMs) to the diagnostic process in radiology is still
being explored. However, with a comprehensive understanding of their capabilities and limita-
tions, LLMs can significantly support radiologists during diagnosis and improve the overall efficien-
cy of abdominal radiology practices. Acknowledging the limitations of current studies related to
ChatGPT in this field, our work provides a foundation for future clinical research, paving the way for
more integrated and effective diagnostic tools.

KEYWORDS
Abdomen, diagnostic imaging, magnetic resonance imaging, multidetector computed tomogra-
phy, artificial intelligence, large language models
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ChatGPT-4, are designed for advanced

natural language understanding and
generation. Due to extensive pre-training on
diverse datasets, these models can process
and generate human-like text. Recent stud-
ies have explored the utility of LLMs in var-
ious domains, including academic writing,
literature reviews, radiological reporting, and
radiological case solving."

I arge language models (LLMs), such as

However, a significant limitation of ex-
isting chatbots is their text-based nature.
While image generators such as DALL-E have
demonstrated impressive results in creating
visual content,®integrating such capabilities
into text-based chatbots such as ChatGPT
remains challenging. Encouragingly, recent
updates in Microsoft Bing, which leverages
ChatGPT-4 technology, have introduced the
functionality of image upload.”® Consider-
ing the text-based nature of LLMs, this rep-
resents a significant advancement, showing
promise in analyzing uploaded images.°

While the exact method by which LLMs
interpret images is not fully understood, it
likely involves multimodal learning methods
and the integration of machine learning al-
gorithms within the chatbot.”" Although
LLMs can successfully evaluate everyday
non-medical images, interpreting radiologi-
cal images is a more sensitive issue and re-
quires rigorous testing for potential model
development. The potential of LLMs to in-
terpret radiological images from certain per-
spectives could provide practical benefits.
Given the recent addition of image upload
functionality to LLMs, the literature lacks
comprehensive evaluations of these models’
performance in analyzing radiological imag-
es.

This study aims to assess the capability
of Microsoft Bing, which utilizes ChatGPT-4
technology, to analyze abdominal images
from computed tomography (CT) and mag-
netic resonance imaging (MRI) examinations.
The goal is to evaluate the model’s interpre-

* In this study, the performance of large lan-
guage models in analyzing abdominal im-
ages is evaluated.

* The model accurately recognized the imag-
ing modality in 95.4% of computed tomog-
raphy cases and 86.1% of magnetic reso-
nance imaging cases.

* Microsoft Bing detected abnormalities in
35% of the images but achieved a correct
interpretation rate of 10.7% for the definite
diagnosis.

tive capabilities using consensus evaluations
by radiologists as the gold standard.

Methods

Study design and image selection

This study was approved by the Eth-
ics Committee of Ege University Faculty of
Medicine (protocol number: 23-8T/9, date:
08.12.2023). Informed written consent was
waived. All images used in the study were
fully anonymized, ensuring that no identifi-
able information was present. None of the
images have previously been published in
any open or subscription-based journals in a
different study.

A retrospective search was conducted for
abdominal CT and MRI acquired between
April 2023 and July 2023, using the institu-
tional picture archiving and communication
systems (SECTRA PACS, Sectra AB, Linkdping,
Sweden).

Abdominal CT scans were conducted
using either a single-source 64-slice rapid
kV-switching dual-energy CT scanner (Dis-
covery CT750 HD; GE Healthcare, WI, USA)
or a 128-slice CT system (Somatom Defini-
tion; Siemens, Germany). Abdominal MRI
scans were obtained using either a 3T MRI
scanner (Magnetom Verio, Siemens, Germa-
ny) or a 1.5 T system (Magnetom Amira, Sie-
mens, Germany). The abdominal MRI scans
encompassed axial, coronal half-Fourier-ac-
quired single-shot turbo spin-echo, coronal
T2-weighted turbo spin-echo sequence with
fat suppression, and axial, coronal, sagittal
fat-suppressed spoiled gradient-echo with
volumetric interpolated breath-hold exam-
ination sequences.

The images were selected through the
consensus of a senior radiology resident and
an abdominal radiologist with 10 years of ex-
perience. When selecting both CT and MR,
the imaging plane and sequence where the
pathology or mass was most clearly visual-
ized were chosen. Only artifact-free images
that delineated the relevant pathology in a
single image section were included.

The study investigated a wide range of
conditions commonly encountered in rou-
tine clinical practice. These entities encom-
passed hepatomegaly, hepatosteatosis,
splenomegaly, chronic parenchymal liver
disease, gallstones, acute pancreatitis, be-
nign and malignant neoplasms of the liver,
kidney, and ureter stones with associated hy-
dronephrosis, bladder stones, bladder diver-
ticulum, benign and malignant neoplasms

of the urogenital system, benign and ma-
lignant gastrointestinal system pathologies,
intra-abdominal abscesses, intraperitoneal
free fluid, abdominal aortic aneurysm, and
retroperitoneal masses.

The specific choice to focus on abdominal
imaging in this study was the relatively limit-
ed use of artificial intelligence (Al) in this area
compared with other parts of the body."
Another reason that the abdominal imag-
es were selected was that this area includes
various organs with a wide spectrum of daily
encountered pathologies.

The inclusion criteria were as follows: 1)
adult patients (aged >18 years); 2) for the
evaluation of masses, only those with diag-
noses confirmed by histopathology; and 3)
entities that can be unambiguously identi-
fied in a single cross-sectional image.

The exclusion criteria were as follows:
1) for the evaluation of masses, any cases
without histopathological confirmation; 2)
entities that cannot be identified in a single
cross-sectional image; and 3) images that are
non-diagnostic due to artifacts.

Reviewers’ interpretations

The evaluation process involved a col-
lective assessment of the imaging modality,
whether the images were contrast-enhanced
or unenhanced, and the MRI sequences
(T1-weighted or T2-weighted MRI). In addi-
tion, any existing pathology or mass within
the organ was investigated in terms of its lo-
cation and nature.

Three months after image selection, these
evaluations were provided through the con-
sensus of a senior radiology resident and an
abdominal radiologist with 10 years of expe-
rience. The reviewers, who had no access to
clinical information, provided written reports
outlining their findings, impressions, and dif-
ferential diagnoses.

For standardization purposes, after the
image evaluation was completed, electronic
medical records were examined to investi-
gate clinical and histopathological diagno-
ses. The histopathological diagnosis of the
masses was confirmed.

Microsoft Bing’s interpretation

Microsoft Bing is an LLM that utilizes Gen-
erative Pre-trained Transformer 4 (GPT-4)
technology created by OpenAl. Additionally,
with its text-based nature, the Bing model
was the first LLM to introduce an image up-
load feature.
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Before uploading images for interpre-
tation, we experimented with 20 images
that were not used in the study to identify
suitable prompts. Although different tech-
niques have been defined for prompt engi-
neering,’>'® due to the recent addition of the
image upload feature to the chatbot and the
lack of prompt engineering work on this top-
ic, prompts were generated based on provid-
ing images and questions.

We replaced all radiologic, pathologic,
and medical terms in the file names with
numbers (1, 2, 3, 4, etc.), meticulously ensur-
ing that the images themselves were devoid
of any text. For the interpretation using Mic-
rosoft Bing, each radiological image was in-
dependently uploaded to the Bing chatbot.

The “More Creative” Bing chatbot model
was selected from three available options.
This model was chosen because the other
two models tended to not answer questions.
To mitigate potential bias, the chat interface
was cleared after each image upload, and no
additional information accompanied the up-
loaded images. Bing’s analysis was driven by
customized prompts, progressively tailored
to our study requirements. These prompts
first inquired about the imaging modality
and then for details such as the sequences
for MRl and the use of contrast media for CT
images. The analysis also examined the im-
aging planes and the presence of abnormali-
ties in the images (Figure 1).

The initial response generated by Bing
was considered, and subsequent repetitions
of the same questions were avoided. In in-

stances where the imaging modality was in-
correctly predicted, no further inquiries were
made regarding the imaging sequence.

Evaluation criteria

The evaluations of Microsoft Bing's in-
terpretations and the assessment of radiol-
ogists were based on the accuracy of the
imaging modality, sequence (in the case of
MRI), imaging plane, correct identification of
the anatomical region depicted in the radio-
logical image, identification of contrast me-
dia administration, and the detection of any
abnormalities.

Statistical analysis

Descriptive statistics were employed to
analyze the collected data and evaluate the
effectiveness of Microsoft Bing in image in-
terpretation. Categorical variables were com-
pared using the chi-square test. All analyses
were conducted using Excel, version 14.7.1
(Microsoft Corp, Redmond, WA), and SPSS
version 28 software (IBM SPSS, Inc, Armonk,
NY, United States). A P value of <0.05 was
considered statistically significant.

Results

In this study, we utilized a sample of 80
images (44 CT scans and 36 MRl scans) for our
analysis, as detailed in Table 1. Out of the CT
scans, six were non-contrast scans covering
the entire abdomen, whereas 38 were con-
trast-enhanced scans. For MRI scans, 26 were
non-contrast scans covering the entire abdo-
men and 10 were contrast-enhanced scans.

What diagnostic observations and
findings do you discern in this

radiologic image?

!

To which specific MRI
sequence does this
MRI image belong?

MRI

To which specific CT
image does this belong,

CT with or without the
administration of
"contrast"?

In which anatomical
plane is the image
presented?

Can you identify
any abnormalities
or pathological
findings in this
image?

Figure 1. Flowchart diagram illustrating the steps involved in interpreting magnetic resonance imaging
(MRI) and computed tomography (CT) images. The diagram shows how Bing can be prompted to analyze
MRI and CT images and provide relevant information, such as the anatomical plane, the MRI sequence, the
presence of abnormalities, and the use of contrast media.
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Identification of the anatomical region

Microsoft Bing achieved an 83.75% suc-
cess rate in identifying abdominal regions
in the images. It correctly identified 90% of
cases (40 out of 44) in CT scans and 77.7%
(28 out of 36) in MRI scans. Incorrectly local-
ized abdominal images were misinterpret-
ed as images of the head, neck, brain, knee,
and chest. Upon further examination, it was
found that 83.3% of the images that were
mistaken for the neck were in the sagittal
plane (five out of six images).

Recognition of the imaging modality

Out of the 44 CT images, Microsoft Bing
accurately identified them as CT scans in
95.4% of cases. In one instance, a CT image
could not be detected (2.3%). Moreover, in
another case, Bing misidentified a CT image
as an MRI (2.3%). Out of the 36 MRI, Microsoft
Bing accurately identified them in 86.1% of
cases. However, in four cases, Bing mistak-
enly classified MRl as CT images (11.1%). Ad-
ditionally, there was one case where an MRI
was incorrectly identified as an X-ray (2.7%).

Identification of the imaging plane

In terms of correctly identifying imaging
planes (axial, coronal, and sagittal), Microsoft
Bing achieved a success rate of 95.4% for CT
images and 83.3% for MRI. However, a to-
tal of eight images were mislabeled. Out of
these mislabeled images, six were incorrectly
identified as coronal instead of axial (75% of
the mislabeled cases), one was mistakenly la-
beled as axial instead of sagittal (12.5% of the
mislabeled cases), and one that should have
been identified as coronal was labeled as axi-
al (12.5% of the mislabeled cases).

Identification of the magnetic resonance
imaging sequence

Out of a total of 36 MRI, Microsoft Bing
misidentified three as CT images and one
as an X-ray. For these four images, the corre-
sponding MRI sequence was not queried at
all. Among the remaining 32 MRI, the system
correctly identified the sequence in 22 imag-
es (68.75%), whereas it could not detect the
sequences in two images (6.25%) and made
mistakes in eight images (25%). Out of the
eight misidentified images, four should
have been classified as T2-weighted but
were labeled as T1-weighted. Additionally,
in three of the misidentified images, Bing
mistakenly labeled them as T1-weighted
instead of T2-weighted. Furthermore, Bing
erroneously identified one image as proton
density-weighted instead of T2-weighted
(Figure 2).
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Table 1. Details of the entities in the CT and MRl images
Entities (CT)

Entities (MRI)

Abdominal cavity (n=1)

Intraabdominal abscess (n=1)

Genitourinary system
(n=18)

Renal angiomyolipoma (n = 1)
Renal cell carcinoma (n =2)
Nephrolithiasis (n = 2)
Horseshoe kidney (n = 1)
Ureteral stone (n=1)
Bladder stone (n=1)
Bladder diverticulum (n=1)
Bladder cancer (n=1)
Adnexal tumor (n =2)

Autosomal dominant polycystic kidney
disease (n =2)

Prostatomegaly (n = 2)
Prostate cancer (n = 2)
Liver (n=7)
Hydatid cyst (n=1)
Hemangioma (n=1)
Diffuse hepatic steatosis (n = 1)
Cholangiocellular carcinoma (n = 1)
Hepatocellular carcinoma (n = 2)

Cirrhosis (n=1)

Spleen (n=1)
Splenomegaly (n=1)

Gastrointestinal system
(n=8)

Colon cancer (n = 3)
Gastric cancer (n=1)
Gastric lymphoma (n = 1)
Crohn’s disease (n = 1)
Mechanical bowel obstruction (n = 1)
Perforated duodenal ulcer (n = 1)
Retroperitoneum (n = 5)
Retroperitoneal malignancy (n = 3)
Abdominal aortic aneurysm (n = 2)
Abdominal wall (n=1)
Incisional hernia (n=1)
Bone (n=1)
Metastasis (n=1)
Gallbladder (n=1)
Cholelithiasis (n=1)
Pancreas (n=1)

Acute pancreatitis (n=1)

Abdominal cavity (n =5)
Intraabdominal abscess (n = 3)

Intraperitoneal free fluid (n = 2)
Genitourinary system (n = 10)

Renal angiomyolipoma (n = 1)
Renal cell carcinoma (n=1)
Renal cyst (n=1)

Bilateral hydronephrosis (n = 1)
Bladder stone (n=1)
Bladder diverticulum (n=1)
Bladder cancer (n=1)
Uterine myoma (n = 1)
Benign prostatic hyperplasia (n = 1)

Autosomal dominant polycystic kidney
disease (n=1)

Liver (n=12)
Hydatid cyst (n=1)
Hemangioma (n = 2)
Biliary cysts (n = 3)
Liver metastases (n = 2)
Hepatocellular carcinoma (n = 1)
Cirrhosis (n=1)
Hepatomegaly (n = 2)
Spleen (n=2)

Splenomegaly (n=1)

Splenic infarction (n = 1)
Gastrointestinal system (n = 3)

Ulcerative colitis (n=1)

Rectum cancer (n =2)

Retroperitoneum (n=1)

Abdominal aortic aneurysm (n = 1)

Gallbladder (n=1)
Cholelithiasis (n=1)
Pancreas (n = 2)
Pseudocyst (n=1)

Walled-off necrosis (n = 1)

MRI, magnetic resonance imaging; CT, computed tomography.
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Identification of contrast media adminis-
tration

Out of the total 44 CT images, Bing could
not detect the imaging modality for one
image, and one was incorrectly recognized
as an MRI instead of a CT image. These two
images were excluded from the inquiry of
contrast media administration. For the re-
maining 42 CT images, Bing was able to suc-
cessfully detect the contrast media adminis-
tration for 27 (64.2%) but could not identify
it for three (7.1%). However, there were some
inaccuracies in Bing's identification of 12 im-
ages (28.5%). Among these 12 misidentified
images, Bing mistakenly labeled 10 (83.3%)
as “without contrast media administration.”
Conversely, it incorrectly labeled two images
(16.6%) as “with contrast media administra-
tion” (Figure 3).

When evaluating Bing’s performance, no
significant superiority between CT and MRI
was observed in any of the different tasks (P

> 0.05). Figure 4 summarizes the accurate re-
sponses (%) of Bing across various tasks.

Detection of abnormalities or additional
comments

Microsoft Bing detected abnormalities in
35% of the abdominal images. However, its
accuracy in correctly interpreting these ab-
normalities was limited, as it only achieved
a correct interpretation rate of 10.7% for the
detected abnormalities. In addition to its in-
terpretations, Microsoft Bing provided inter-
esting additional comments on the images
(Table 2).

Discussion

This study demonstrates that Microsoft
Bing can accurately identify basic tasks in
radiological images, such as detecting ana-
tomical regions, imaging modalities, and im-
aging planes. However, its accuracy decreas-
es when identifying MRI sequences (68.75%)
and detecting administration of contrast me-

dia for CT scans (64.2%). From a diagnostic
perspective, it demonstrated limited success
in determining pathology, with only a 10.7%
success rate.

Radiologists, who play a pivotal role in
interpreting medical images, are increasing-
ly harnessing the power of Al. Among the
various facets of Al, LLMs have emerged as
a distinct area of interest.'”” However, the
text-based nature of LLMs, as exemplified
by chatbots such as ChatGPT, Google Bard,
and Microsoft Bing, presents challenges in
effectively handling radiological images.
Despite this limitation, an innovative ap-
proach termed “diagnoses based on imaging
patterns” was introduced by Kottlors et al.”®
Although reliant on text, this method has
successfully addressed the issue and yield-
ed valuable insights. Remarkably, ChatGPT-
4’s suggestions demonstrated compatibility
at a rate of 68.8%, and a notable 93.8% of
these suggestions were considered accept-
able alternatives.” Similarly, Sarangi et al."

To which specific MRI sequence does this MRI image belong ?
|/

/" Analyzing the image: Privacy blur hides faces from Bing chat

</ Searching for: MRI sequences

/' Generating answers for you...

This is a challenging question, as there are many types of MRI sequences that can produce different

some educated guesses.

« The image is in coronal view, which means it shows a slice of the body from the front to the back.

« The image shows the liver, stomach, and intestines, which are part of the abdominal organs.

« The image is slightly blurry and grainy, which suggests a low spatial resolution or a high level of

noise.

« The image has a high signal for fat and a low signal for water, which indicates a T1-weighted

3 &

« The image does not show any contrast enhancement, fat suppression, fluid attenuation, or

susceptibility effects, which rules out some of the specialized sequences "

2

Based on these clues, | think the most likely MRI sequence that this image belongs to is a T1-weighted
spin echo sequence. This is a common and basic sequence that is often used as a foundation and

comparison for other sequences ' * ® *

| hope this helps you with your question. If you want to learn more about MRI sequences, you can check

out the web search results that | found for you

Ask me anything...
&

DRSS o

©

0/4000

Figure 2. Microsoft Bing'’s interpretation for the identification of magnetic resonance imaging sequences. Bing misidentified the T2-weighted image as a T1-

weighted image.
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To which specific CT image does this belong, with or without the administration of contrast ?

./ Analyzing the image: Privacy blur hides faces from Bing chat

«/~ Searching for: CT image types and contrast

«/ Generating answers for you...

This is an axial CT image of the abdomen without the administration of contrast. This can be inferred

from the following facts:

« The image shows the liver, spleen, kidneys, and intestines " .

« The image is black and white, which indicates that no contrast material was used * .

» Contrast material is usually given through a vein in the arm or inserted into the rectum to enhance
the visibility of certain organs or blood vessels * * . There is no evidence of such contrast material

in the image.

Therefore, this image belongs to the category of precontrast or native-phase images * , which are taken

before any radiocontrast has been administered. These images are useful for evaluating the density and

morphology of the abdominal organs ® .

Learn more: 1. teachmeanatomy.info

@ Ask me anything...

o
()

2. mayoclinic.org

3.imaginis.com  +2 more 10f30 @

©

0/4000

Figure 3. Microsoft Bing's interpretation for the identification of the use of contrast media. Bing accurately interpreted the non-contrast computed tomography

image.

@CT OMRI

Anatomical Region

Imaging Modality

Imaging Plane

MRI Sequence / CT Contrast Media
Administration

o

NJ DY

R @ & L & P

Figure 4. Bar chart illustrating the accuracy (%) displayed by the Bing large language model across
different tasks, presented as percentages. Each group represents a distinct task, with bars indicating the
corresponding accuracy rates. CT, compted tomography; MRI, magnetic resonance imaging.

examined cardiovascular and thoracic im-
aging patterns using four different language
models and demonstrated that Google Bard
exhibited lower performance compared with
the other models.

Currently, models trained with medical
information, such as Med-PaLM2,% are being

developed but are not yet available for use.
Additionally, the Language and Visual As-
sistant model developed by Goktas et al.?'*
could be used in conjunction with the smart
prompt learning method for skin patholo-
gies, and this could also be applied in radiol-
ogy. Rather than aiming for a 100% diagno-

sis, it is emphasized that results obtained
from proportions and options could be more
practical and efficient in daily use.?’? How-
ever, there is no existing literature that exam-
ines the performance of the chatbots for the
evaluation of radiologic images.

To fully evaluate the effectiveness of these
advancements, especially in the analysis of
radiological images, we believe it is neces-
sary to increase research efforts in this area.
While we have made initial strides in this di-
rection, our current study mainly focuses on
assessing the chatbot’s ability to recognize
specific anatomical regions in an image and
identify basic diagnostic tests.

For this study, we chose to use abdominal
images, which often include multiple organs.
Recent meta-analyses have indicated that
only a small percentage (4%) of commercial-
ly available Al applications are dedicated to
abdominal imaging, with a mere 3% for liver
imaging and 1% for prostate imaging. This is
substantially lower than the adoption rates
observed in other fields, such as neuroradiol-
ogy, chest imaging, breast imaging, cardiac
imaging, and musculoskeletal imaging.'
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Table 2. Abnormalities and additional comments from Microsoft Bing, which include both accurate and partially accurate comments, along
with the interpretation of the radiologist

Finding in the
patient’s image

Abnormalities/additional comments (Bing) - accurate and
partially accurate comments

Reviewer’s interpretation

Abdominal aortic
aneurysm
(CT image)

Hepatocellular
carcinoma
(CT image)

Liver hydatid cyst
(CT image)

Prostate carcinoma
(CT image)

Hemangioma
(CT image)

Gastric carcinoma
(CT image)

Giant hemangioma
(MRI)

Hepatocellular
carcinoma
(MRI)

Duodenal ulcer
perforation
(CT image)

Abscess
(MRI)

Biliary cyst

(MRI)

Renal cell carcinoma
(CT image)

Hepatosteatosis
(CT image)

Spleen, kidney normal, liver enlarged.

Cancer of the liver.

| can notice that your liver appears enlarged and there is a
small amount of fluid around it.

The image appears to be of an adult male.

Right lobe of the liver, which could indicate a tumor or an
abscess.

It seems that there is an abnormality in the stomach area.
There is a large mass that occupies most of the stomach

and extends into the left side of the abdomen. This could

be a sign of a tumor, a cyst, or an infection. The liver also
appears to be enlarged, which could indicate liver disease or
inflammation.

The liver appears to be enlarged and has a white mass on it.

The liver appears to be damaged or diseased, as it has a
dark, uneven texture. | cannot diagnose the exact condition
of the liver, but it may be affected by cirrhosis, hepatitis,
cancetr, or other liver diseases.

There are several dark spots on the scan, which may indicate
damage or abnormalities.

The large white area could be a tumor or an abnormal
growth that needs further investigation. The image quality is
low and the details are not

Large mass on the left side of the image that could be a
tumor or cyst. | also see several smaller masses throughout
the image that could be metastases or benign lesions.

The image shows the liver, spleen, and kidneys. The liver
appears enlarged and there is a large mass in the right lobe.
This could be a sign of liver cancer or another condition.

| see an abnormality in the image, which is a dark spot on
the left side of the liver. This could indicate a tumor, a cyst,
an abscess, or another condition that affects the liver tissue.
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The liver size has increased, and there is an aneurysmatic dilation
observed at the infrarenal level of abdominal aorta, which has
reached a diameter of 6.5 cm and shows partial thrombosis.

A large mass is observed in segments 5-6 of the right lobe of
the liver, extending exophytically toward the abdominal cavity.
The lesion exhibits a heterogenous internal structure with
hypervascularity in the arterial phase.

A large lobulated, thick-walled cystic lesion is observed in the liver
extending from the anterior segments of the right lobe of the liver to
the medial segment of the left lobe.

An increase in the size of the prostate gland is observed. The
prostate gland shows an infiltrative extension toward the bladder in
the anterosuperior aspect and toward the rectum in the posterior
aspect. In the presacral area, there are irregularly bordered nodular
soft tissues that merge with each other, and linear densities are
observed in the surrounding fat planes. These findings strongly
suggest the possibility of prostate malignancy.

A large peripheral nodular contrast-enhancing mass, extending from
the level of segments 5-6 of the right lobe of the liver toward the
abdominal cavity, is primarily suggestive of a hemangioma.

At the level of the stomach cardia and the lesser curvature, there is
wall thickening observed, asymmetrically extending into the lumen
in a polypoid manner. These findings are primarily suggestive of a
malignant nature.

A peripheral nodular contrast-enhancing mass filling the left lobe of
the liver and extending exophytically toward the abdominal cavity.
The findings are primarily suggestive of a hemangioma.

The liver demonstrates a large-sized mass with mildly increased
signal intensity in the peripheral region and high signal intensity in
the central section, which may contain cystic-necrotic areas. These
findings are primarily suggestive of a malignant nature.

Widespread free-air densities are observed in the abdominal cavity,
which are primarily indicative of gastrointestinal system perforation.

A large-sized lesion with peripheral contrast enhancement and
a cystic appearance is observed in the left paraaortic area. The
findings are primarily suggestive of an abscess.

A large-sized, lobulated, and thin-walled cystic lesion is observed in
the central part of the liver.

A large mass in the middle part of the kidney is present. The lesion
extends endophytically toward the renal sinus and exophytically
toward the pararenal area. The lesion has irregular borders and
contains peripheral hypervascular solid areas, as well as low-
density areas in the central region, which could be suggestive of
necrosis. Given these features, the primary consideration is renal cell
carcinoma.

The liver parenchyma shows a diffuse decrease in density compared
with the spleen, which is suggestive of hepatosteatosis.
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Table 2. Continued

Finding in the
patient’s image

Cholelithiasis
(CT image)

Cholangiocellular
carcinoma
(CT image)

Lymphoma gastric
involvement
(CT image)

Autosomal dominant
polycystic kidney
disease

(CT image)

Sigmoid colon
carcinoma
(CT image)

Giant renal
angiomyolipoma
(MRI)

Myoma uteri
(MRI)

Walled-off necrosis
(MRI)

Abnormalities/additional comments (Bing) - incorrect
comments

The liver appears to be enlarged and has a heterogeneous
texture, which could indicate some inflammation or fatty
infiltration.

The spleen also appears to be enlarged and has a smooth
contour, which could suggest congestion or infection.
The stomach is distended and filled with gas, which could
be due to gastric dilatation or obstruction.

The intestines are also distended and show multiple air-fluid
levels, which could indicate ileus or bowel obstruction.
There is some fluid accumulation in the peritoneal cavity,
which could be due to ascites or peritonitis.

| can see in the image that the liver looks enlarged and has
a patchy appearance. This could indicate some liver disease
orinjury.

The liver appears to be enlarged and there is a dark area in
the upper right portion of the liver. This could indicate a liver
abscess.

The bright white spots on either side of the pelvis may
indicate metal implants or screws.

The liver seems to be enlarged, which could indicate a
possible abnormality.

The liver has high signal intensity (white), indicating high fat
content.

Some degree of osteoarthritis or postoperative changes in
the knee joint.

The liver appears to be enlarged and there are multiple dark
spots scattered throughout the liver. These could be signs of
liver disease or cancer.

Reviewer’s interpretation

A high-density structure is observed in the lumen of the gallbladder,
which is primarily indicative of a gallbladder stone.

At the level of posterior segments of right lobe of the liver, a mass is
observed with a peripheral location, causing retraction of the liver
capsule. The mass exhibits peripheral contrast-enhancing solid areas
and central cystic-necrotic hypodense areas, which are suggestive
of a malignant nature. However, due to the absence of chronic
parenchymal liver disease findings and the presence of retractions
caused by the mass on the liver capsule, the primary consideration is
cholangiocellular carcinoma.

The presence of increased size in both the liver and spleen is
observed. Additionally, there are signs of periportal edema in the
liver. Furthermore, there is diffuse and severe thickening of the
gastric wall. Considering the enlargement of the liver and spleen
along with these findings, lymphoma is considered as a possible
explanation.

The description indicates an increase in the size of both kidneys, with
multiple cysts located at the cortical and peripelvic regions, making
the kidney parenchyma indistinct. Cysts are also observed in the liver
parenchyma. These findings are suggestive of autosomal dominant
polycystic kidney disease.

In the sigmoid colon, there is a 5-cm mass with findings indicating
malignancy, including concentric luminal narrowing, thickening of
the colonic wall, and linear densities in the surrounding fatty tissue.

A large-sized mass is observed, originating from the lower pole of
the kidney and extending anteromedially toward the pararenal area.
The lesion contains macroscopic fat and contrast-enhancing regions.
These findings are primarily suggestive of an angiomyolipoma.

A large-sized solid mass is observed, filling the uterine fundus
and corpus and extending toward the cervix. The lesion appears
predominantly low signal intensity on T2A images but contains
heterogeneously high signal intensity areas. These findings are
primarily suggestive of a myoma uteri (uterine fibroid).

At the level of the pancreatic head-neck junction, the normal
morphology of the pancreas is not visualized. Instead, there is a large
lobulated thick-walled cystic lesion extending from the head and
neck region to the body of the pancreas. The internal structure of
the cystic lesion shows areas that could be indicative of debris. These
findings are primarily suggestive of a walled-off necrosis. Minimal
dilatation is observed in the pancreatic duct. Free fluid is observed in
the perihepatic, right paracolic, and perisplenic spaces.

MRI, magnetic resonance imaging; CT, computed tomography.

Bing’s robust performance-demonstrated
by its high accuracy rates (83.75%) in under-
standing abdominal images and its notable
success in imaging modalities such as CT
(95.4%) and MRI (83.3%)-inspires us to further
explore detailed inquiries related to medical
images. Despite its proficiency in identifying
planes in images, there have been instances
where it misclassified coronal images as axial

(12.5%). Interestingly, while the model may
correct its mistake upon subsequent ques-
tioning, our research was focused on the
initial responses. This distinction is import-
ant because when asked the same question
again, the model might recognize the error
or interpret the user’s dissatisfaction with the
previous answer, potentially providing a dif-
ferent response. This situation underscores

the need for caution regarding LLMs’ poten-
tial inconsistency.

While Bing's responses sometimes ac-
curately predict the application of MRI se-
quences and administration of contrast
agents for CT scans, there have been instanc-
es where it misinterprets the information. An
important point to highlight is the rationale
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provided by Bing when giving its responses.
Even when the responses are correct, the
underlying explanations have sometimes
contained incorrect information. Bing’s lack
of proficiency in fundamental aspects of ra-
diological image interpretation, its use of
incorrect contexts in both successful and
unsuccessful cases, and its failures in inter-
preting pathological conditions all suggest a
need for caution. This caution is particularly
important when dealing with models such as
Bing that have not been specifically trained
for medical image interpretation. This spe-
cific training deficiency can be attributed to
the model’s errors in tasks that go beyond
basic ones. However, this does not necessar-
ily indicate a bleak future for LLMs in image
interpretation. Although not yet published,
it is expected that the performance of mod-
els specifically trained for medical purposes,
such as BioBERT and Med-PaLM, will be high-

er.1 7,23

Additionally, unlike the approach tak-
en by Ueda et al.**, where the analysis was
based on both patient history and imaging
findings, we chose not to provide any pa-
tient history information to Bing during the
analysis of radiological images. Expecting ac-
curate diagnoses without this contextual in-
formation would be unjustifiable. However,
the decision to exclude patient history was
intentional, as providing such information
might have led Bing to rely more on theoret-
ical knowledge than image analysis. There-
fore, we deliberately limited our study to the
use of radiological images alone.

The significant success in detecting ab-
normalities involving the liver, including the
identification of liver masses, is noteworthy.
Pinpointing the exact reasons for this success
may be challenging, but one possible factor
could be the liver's larger size compared
with other organs. Another intriguing ob-
servation is the potential misinterpretation
of sagittal images (where the spinal cord is
visible) as head and neck images, presenting
a unique finding. It is plausible that focusing
on larger structures might lead to underesti-
mating other images. On the other hand, a
study conducted by Cao et al.® found that
ChatGPT's success rate in providing theoret-
ical radiological information related to liver
cancer was relatively low.

This study has certain limitations due to its
nature and the specific focus of our research.
A significant limitation is that Bing currently
allows only one image to be uploaded at a
time, which presents a challenge. Radiolo-
gists often need to examine consecutive im-

ages from different planes to make accurate
assessments. To address this limitation, we
selected demonstrative images that effec-
tively highlight the imaging findings with
the utmost clarity. Another significant limita-
tion that needs to be mentioned is prompt
engineering, which is crucial for LLMs and
can directly affect the output. Over time, var-
ious prompt techniques such as zero-shot
prompting, few-shot prompting, instruction
following, and chain-of-thought prompt-
ing have been developed. However, these
prompts have been developed considering
the text-based nature of the models.’s"72627
For this study, the image upload feature was
newly introduced at the time of the experi-
ment, and the lack of prompt engineering
studies that could improve the quality of
the output in terms of image analysis is also
a limitation. Lastly, the limited sample size is
another constraint of our study.

In conclusion, this study reveals that Mi-
crosoft Bing, utilizing ChatGPT-4 technolo-
gy, can achieve success in basic radiological
tasks. However, further refinement and en-
hancement are essential to improve accura-
cy in recognizing imaging modalities, iden-
tifying specific imaging planes, interpreting
imaging findings, and detecting abnormali-
ties. In the future, LLMs trained with medical
data may demonstrate higher success rates
compared with this study. This suggests a
promising avenue for future research and
development in this field.
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PURPOSE

The purpose of this study was to propose a new computer-assisted two-staged diagnosis system
that combines a modified deep learning (DL) architecture (VGG19) for the classification of digital
breast tomosynthesis (DBT) images with the detection of tumors as benign or cancerous using the
You Only Look Once version 5 (YOLOv5) model combined with the convolutional block attention
module (CBAM) (known as YOLOv5-CBAM).

METHODS

In the modified version of VGG19, eight additional layers were integrated, comprising four batch
normalization layers and four additional pooling layers (two max pooling and two average pool-
ing). The CBAM was incorporated into the YOLOvV5 model structure after each feature fusion. The
experiment was carried out using a sizable benchmark dataset of breast tomography images. A
total of 22,032 DBT examinations from 5,060 patients were included in the data.

RESULTS

Test accuracy, training loss, and training accuracy showed better performance with our proposed
architecture than with previous models. Hence, the modified VGG19 classified DBT images more
accurately than previously possible using pre-trained model-based architectures. Furthermore, a
YOLOv5-based CBAM precisely discriminated between benign lesions and those that were malig-
nant.

CONCLUSION

DBT images can be classified using modified VGG19 with accuracy greater than the previously avail-
able pre-trained models-based architectures. Furthermore, a YOLOv5-based CBAM can precisely
distinguish between benign and cancerous lesions.

CLINICAL SIGNIFICANCE

The proposed two-tier DL algorithm, combining a modified VGG19 model for image classification
and YOLOv5-CBAM for lesion detection, can improve the accuracy, efficiency, and reliability of
breast cancer screening and diagnosis through innovative artificial intelligence-driven methodol-
ogies.

KEYWORDS
Breast imaging, artificial intelligence, mammography, breast cancer

reast cancer (BC) is one of the main causes of mortality in women and a major global
health concern.! According to data from the World Health Organization, in 2022, 665,684
women worldwide lost their lives due to malignancy in the breast, accounting for 2.3
million new cases of the disease. BC is the most common cancer globally among women; be-
tween 2015 and 2021, 7.8 million women were diagnosed with the disease.? In the US, BC ranks
as the second most common malignancy after lung cancer, according to the Surveillance,
Epidemiology, and End Results Program.? Globally, according to available data,** one in eight
women will contract BC. As a result, BC screening is one of the most significant and common
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medical imaging prerequisites, with over 39
million examinations carried out annually.®
Early identification and discovery are essen-
tial for therapy, rehabilitation, and a decrease
in death rates.® The prognosis and survival
rate of cancer vary greatly depending on its
stage. Cancer treatment is more successful
the earlier the disease is discovered.’

Radiologists examine and annotate im-
ages generated by screening techniques to
identify tumors.® The gold standard for this
cancer screening has been supplanted by
the relatively new imaging technique known
as digital breast tomosynthesis (DBT), which
has taken the place of mammography.® This
is a type of three-dimensional (3D) mam-
mography that aims to increase abnormali-
ty detection.’ DBT, which recreates multiple
low-dose picture projections from a moving
digital X-ray source over a restricted arc an-
gle, is used to build the 3D model.” Since a
two-dimensional (2D) mammography exam-
ines every tissue in the breast at once, there is
a risk that certain tissue features will overlap
and produce inaccurate results. By allowing
radiologists to view multiple layered images
prior to classifying tumors, DBT helps address
some of the problems associated with 2D
mammograms.' Compared with traditional
mammography, DBT often requires longer
image acquisition and processing times, as
well as increased radiation exposure (though
it is still within safe limits).'*"

Radiologists are already using comput-
er-aided diagnosis tools to help them make

* The modified VGG19 architecture classified
digital breast tomosynthesis (DBT) images
more accurately than previously available
pre-trained models.

* The You Only Look Once version 5 (YOLOVS5)-
based convolutional block attention mod-
ule (CBAM) precisely discriminated between
benign and malignant lesions, showing bet-
ter performance metrics such as test accura-
cy and training loss.

* The research fills a significant gap in breast
cancer diagnosis by utilizing advanced
deep-learning strategies for DBT images.
The two-tier deep learning algorithm, com-
bining a modified VGG19 model for image
classification and YOLOv5-CBAM for lesion
detection, demonstrated good outcomes in
terms of accuracy and time.

* The study highlights the advantages of DBT
over traditional two-dimensional mammog-
raphy, emphasizing its improved accuracy
in screening due to the three-dimensional
view it provides.

decisions.”? These technologies have the
potential to reduce significantly the time
and energy required to evaluate a lesion in
clinical practice.” They may also reduce the
occurrence of false positives, which lead to
unnecessary and uncomfortable biopsies.™
Recent technological advancements in deep
learning (DL), such as artificial neural net-
works and transfer learning, have outper-
formed several machine learning algorithms
in tasks such as classifying and identifying
lesions.' Unlike traditional machine learning
methods, which require a manual feature
extraction and selection step, DL algorithms
adaptively learn the optimal feature ex-
traction process from the input data.’™

However, although DL techniques for le-
sion detection and classification have been
used extensively using mammography, there
have been few studies using DBT. This could
be attributed to the computer memory con-
straints associated with DL methods, which
are linked to the higher dimensionality of the
data. In previous studies, breast tumors from
DBT data have been segmented, classified,
and detected using DL. Li et al.® carried out
deep convolutional neural network (DCN-
N)-based mass classification of BC using DBT
and assessed different transfer learning strat-
egies. They collected data on 441 patients
who had undergone DBT and conducted
three different experiments to compare 2D
and 3D DCNNs trained on volumetric DBT.
The 2D convolutional neural network (CNN)
that was trained on both DBT and full-field
digital mammography achieved better re-
sults, with a change in area under the curve
of 0.009.'®

Ricciardi et al."” developed a DCNN-based
detection system for the automatic classifica-
tion of the presence or absence of mass le-
sions in DBT-annotated images. Background
correction, data augmentation, and nor-
malization were basic pre-processing steps.
Three DCNN architectures trained on two dis-
tinct datasets were compared: 1) built from
scratch (DBT-DCNN); 2) pre-trained (AlexNet
and VGG19); 3) optimized using a transfer
learning approach. Additionally, a Grad-CAM
technique was used to provide a position in-
dication for the lesion in the DBT. The accura-
cy of the DBT-DCNN network was 90% + 4%,
and the sensitivity was 96% =+ 3%."”

Lotter et al.® presented a DL method that
was annotation-efficient and accurate; the
method achieved maximum performance in
classification, detected cancers in clinically
negative mammograms, was effectively ap-
plicable to a population with low screening

participation, and outperformed five full-
time breast-imaging radiologists, with an av-
erage 14% increase in sensitivity. The model
used a multiple-instance learning approach
in which it was progressively and effectively
trained on DBT using only breast-level labels.
The authors were successful in maintaining
localization-based interpretability by gener-
ating new “maximum suspicion projection”
images from DBT data.®

For the prediction of Ki-67 expression in
DBT images, Oba et al.’”® developed a mod-
el based on DL. The Ki-67 expression of 126
patients with pathologically proven BC was
chosen and assessed. The DL model em-
ployed the Xception architecture to forecast
the levels of Ki-67 expression. The accuracy,
on average, was 0.912. The findings point to
the possible use of their model to predict
Ki-67 expression from DBT, which is useful
in deciding on a BC treatment plan prior to
surgery.'® Buda et al.” shared a large-scale
publicly available DBT examination dataset,
which included information for 5,060 pa-
tients, and used it to train a detection mod-
el. One hundred twenty-four images hav-
ing bounding boxes for malignant and 175
images having bounding boxes for benign
lesions were used to develop a detection
algorithm based on a 2D DenseNet. There
was no pretraining on alternative datasets or
comparable modalities, such as mammog-
raphy. The free-response receiver operating
curve, displaying the sensitivity of the model
in relation to false-positive predictions, was
utilized for the ultimate assessment of the
baseline detection algorithm.®

Earlier studies have proposed classifica-
tion or detection using DBT with notable
contributions. However, they are limited by
fewer images in the datasets,'® lack of exter-
nal validation and clinical assessment,'” lim-
ited comparison of advanced architectures,
and lack of diversity in training data.®'® The
DBT data used in this study has also been
utilized in several studies;'** however, these
studies have either focused on the classifi-
cation or detection of the lesions as benign
or malignant. Table 1 provides a summary of
the studies conducted on the Duke Dataset
from the Cancer Imaging Archive (TCIA).%6
The model in the current study is the first
state-of-the-art model that classifies a DBT
scan into one of three classes: normal, ac-
tionable, and tumor. Moreover, it detects the
lesion as benign or cancerous. The model
incorporates a modified VGG19 DL archi-
tecture. The batch normalization layers are
placed in every fourth convolutional layer
to enhance the model’s training efficiency
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Table 1. Summary of the previous studies utilizing data from the Cancer Imaging Archive

Citation Architecture Pre-processing Training/testing dataset Outcome Results
ResNet-18, AlexNet, DBT augmentation; image Patients — 5.060 Classification into
21 MobileNetV2, GoogleNet, enhancement techniques; color Slices — 22 632 normal, benign, and Acc.: 56.52
DenseNet-201, VGG-16, feature mapping ! malignant
Conversion of volume intensities to
8-bits depth; extraction of breast Patients - 5,060 . .
22 | ’ r b
i mask area; flipping to convert all the Slices - 22,032 HH A 10U: 0.85
volumes into same orientation
s ResNet Cropping; reductlor] of pixels; Cancer + actlon.able -100 Classification Acc. 86
transformation Normal + benign - 100
2 Inception v3 Cropping; reductlo.n GG NS = Lesion detection Acc.:91.4
augmentation Tumor - 223
. .Data augment_atl?n; image f|lppll’.lg; Patients — 985 _ .
Faster R-CNN image translation; channel reception Detection Acc.: 83.08
. Scans - 1,000
augmentation
Patients - 5,060
- . . ! . . R
2 Layer DenseNet Cropping; downscaling Scans - 22,032 Lesion detection Sensitivity: 78
Cropping; normalization; masking and LUl
2 Faster R-CNN ppIng; ! 9 Patients - 5,060 Lesion detection Sensitivity: 60

background suppression

Scans - 22,032

DBT, digital breast tomosynthesis.

by reducing internal covariant shifts. The tu-
mor is detected using a You Only Look Once
version 5 (YOLOv5)-based convolutional
block attention module (CBAM) architec-
ture, utilizing the two submodules of CBAM:
channel attention and spatial attention. This
study explores the integration of YOLOv5
(a state-of-the-art object detection model)
with CBAM (a mechanism that enhances fea-
ture representation) to improve detection
accuracy and efficiency. Thus, this model has
applications in both the screening and diag-
nosis of BC.

Methods

Dataset

The dataset available on TCIA website
was used in this investigation; it was ac-
quired from the Duke Health System using
the Duke Enterprise Data Unified Content
Explorer tool between January 1, 2014, and
January 30, 2018.% The data included a total
of 22,032 DBT examinations from 5,060 pa-
tients. The dataset included DBT images from
four different views along with four catego-
ries of cases: normal (no sign of cancer and
a biopsy was never performed), actionable
(cancer may be present, but no biopsy was
performed), biopsy-proven benign (a biopsy
was performed, and the tumor was deter-
mined to be benign), and biopsy-proven can-
cer (a biopsy was performed, and the tumor
was classified as malignant).* The Digital
Imaging and Communications in Medicine
(DICOM) images consisted of a collection
of 2D slices taken from four different views:

left-mediolateral oblique, right-mediolateral
oblique, left-craniocaudal, and right-cranio-
caudal.

Ethics

This investigation utilized data from the
TCIA website, which was obtained from the
Duke Health System. Since the data is pub-
licly available and patient consent is not re-
quired, ethical approval was not necessary
for this study.

Methodology

The overall methodology consisted of
two stages: classification and detection. First,
the images were classified as normal, action-
able, benign, or cancer. In the second stage,
the lesion was detected as benign or can-
cerous using the annotated images contain-
ing bounding boxes on the tumor area. The
step-by-step methodology for each stage is
shown in Figure 1, which summarizes the en-
tire architecture utilized in this study.

Data pre-processing

Certain pre-processing steps were ap-
plied at both stages. The following sections
describe all the steps that were applied to
prepare the dataset for modeling.

Classification

The following steps were carried out to
prepare the DBT images for classification into
normal, actionable, or tumor. The images
were changed from DICOM to JPEG format,
a transformation that not only simplified the
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data format but also allowed compatibility
with the next stages of processing. The in-
tensity rescaling was done to standardize the
pixel intensity values in all the images so the
uniformity of the image could be ensured
and the effect of the different illuminations
or contrasts could be eliminated. Color space
conversion was also carried out to improve
the understandability and the discrimina-
tive capacities of the images, which, in turn,
facilitates the extraction of more significant
features for the classification of the images.
Resizing was done to adjust the spatial sizes
of the images. Hence, the spatial dimensions
of the images were harmonized, which im-
proved consistency and removed possible
distortions that could affect the analysis.
Normalization-the scaling of pixel values to a
standard range-was also performed.

Detection

To prepare the data for the detection
stage of determining the tumor as benign or
cancerous, the images were first augment-
ed, and then the pre-processing techniques
mentioned in the classification were applied.
The process of purposefully increasing the
volume and complexity of already-existing
data is known as data augmentation. Data
augmentation has become a necessary
pre-processing step in DL.

Because a significant number of training
samples are needed for neural networks and
medical datasets are sometimes scarce, the
first step in increasing the diversity of the
dataset is data augmentation; in this study,

Yazeed Alashban.



the Roboflow tool was used for this activity.
The following steps were performed: text
files were generated to contain essential
annotations, and all the generated text files
were imported to Roboflow. Five types of
augmentation techniques were applied: hor-
izontal and vertical flips, 90-degree rotations
(clockwise, anticlockwise, upside down),
cropping (ranging from 0% to 25% maxi-
mum zoom), rotations (—15 to +15 degrees),
and shears (10-degree vertical and horizon-
tal). The total number of images before and
after augmentation is given in Table 2.

Data splitting

The dataset was split into three subsets
for the classification and detection stages:
training (number of images for classification:
19,148, number of images for detection:
2,116), validation (number of images for
classification: 1,163, number of images for
detection: 604), and testing (number of im-
ages for classification: 1,721, number of im-
ages for detection: 303) in the 70, 20, and 10
ratios. The number of instances in each split
for each category for the classification frame-
work is given in Table 3.

Experimental setup

The chosen equipment, including an
NVIDIA RTX 4090 GPU and AMD EPYC 7R12
48-Core Processor, provided high compu-
tational power (1.8 TFLOPS and 24.0/192
CPU cores, respectively), which is essential
for intensive model calculations. The moth-
erboard ROME2D32GM supports PCle 4.0,
enhancing data transfer speeds (22.8 GB/s),
which is crucial for handling large datasets.
With 516 GB of memory and a 4TB Predator
SSD, the system ensured ample storage and
quick data access (3,830 MB/s), supporting
efficient model training and analysis. The
equipment’s high-performance specifica-
tions were used to optimize model develop-
ment and execution. The pre-processed DBT
images were classified using VGG19, and de-
tection was based on YOLOv5-CBAM.

Modelling

The modified VGG19 model was used to
classify the DBT slice images into normal, ac-
tionable, and tumor. A YOLOv5-CBAM model
was used for the detection of lesions as be-
nign or cancerous.

Modified VGG19

Transfer learning involves transferring the
learned parameters of the pre-trained CNN
model. It involves shifting the weights (as

given in Table 4) of a CNN model that was
trained on additional sizable datasets.”’” Sci-
entists are creating deeper learning models
to increase performance as DL models have
become more and more popular in image
classification and recognition applications.
VGG19 is a neural network comprising 43
layers, namely the input, 16 convolutional
layers, 16 ReLU layers, 5 max pool layers, 3
full-connected layers, 1 softmax layer, and
the output. In this way, the modified version
of VGG19 consisted of 8 complementary lay-
ers, which were 4 batch normalization layers
and 4 extra pooling layers. The batch nor-
malization layers consisted of 2 max pooling
and 2 average pooling layers. The layering
of batch normalization layers between ev-
ery 4" convolution layer was interpreted to

Input Image Preprocessing Modified VGG 19

* Normalization

Normal ~ Actionable Tumor >
i i
rom ! :
-—) - | H
= z
H
| |

improve training efficiency by reducing in-
ternal instability. This modification produces
not only a smaller scale or initial values of the
gradient that parameters rely on for modify-
ing but also a better and more natural flow of
data between the intermediate layers of the
neural network, which greatly reduces the
number of iterations required for training. As
to extra pooling layers to further the 5" and
the 10™ convolutional layers of the DL model,
crucial low-level details are passed through
the learning model, and this helps capture
sharp features integrally. The size of the input
image was 512 x 512.

Classification

Annotation Files

Tumor Image

Augmentation

* Merge the file path
and boxes dataset

« Flips
* 90-degree
Rotations
+ Cropping

based on_patient

- P
+ Create the bt file

on YOLOVS format
from x, y, width
and height

YOLOv5-CBAM

Convolutional Block Attention Module

/~" " Benign Cancer

Figure 1.The schematic depicts the organization of the suggested framework. YOLOvS5, You Only Look Once
version 5; CBAM, convolutional block attention module.

Table 2. Total number of images before and after augmentation for the application of the

YOLOv5-CBAM architecture

Dataset Before augmentation After augmentation
Training 293 2,293
Validation 58 456
Testing 35 274

Total 386 3,023
YOLOVS5, You Only Look Once version 5; CBAM, convolutional block attention module.

Table 3. Summary of the dataset splitting for each class

Category Training Testing Validation
Normal 18,232 1,356 928
Actionable 716 244 160
Tumor 200 121 75
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YOLOv5-CBAM

The attention mechanism makes it pos-
sible for models to prioritize and process
information selectively, focusing only on the
most crucial details and ignoring the rest.
Convolutional block attention modules are
one type of attention mechanism meant to
enhance CNN performance. As can be seen
in Figure 2, the CBAM is incorporated into
the proposed model structure after each
feature fusion, or “concat” In an image or
feature map, it mainly enhances feature ex-
traction and records meaningful spatial and
channel-wise dependencies. The efficacy of
this module is demonstrated in the exper-
iments reported in the study,”® where the
performance of the module is significantly
improved by integrating the CBAM into var-
ious models across a variety of classification
and detection datasets.

Convolutional block attention modules
are made up of two sub-modules: the chan-
nel attention module and the spatial atten-
tion module. The primary focus of channel
attention is on locating the essential traits
or features needed to identify a lesion in an
image. However, it is crucial to remember
that the lesion is a relatively small and sparse
component within the entire image when
it comes to particular tasks, such as lesion
detection. In these situations, the value of
the individual pixels in the entire image is
not equal. At this point, spatial attention is
applied to solve the “where” issue, which in-
volves locating the lesion in the image. Func-
tioning alongside channel attention, spatial
attention gathers data from various spatial
regions of the image. By giving these spatial
features weights, it essentially highlights the
areas of the picture where lesions are pres-
ent. Applying channel and spatial attention
in that order achieves this. Figure 3 illustrates
how channel attention can compute chan-
nel weights represented as WCA € RC x 1 x
1, and spatial attention can compute spatial
weights (WS) denoted as WS € RH x W x 1,
given the input feature map F € RW x H x C.

Channel attention refers to a multi-step
process that is applied to an input feature
map (F). Global max pooling (GMP) and
global average pooling (GAP) are carried
out to record the highest and lowest spatial
responses. These responses are then pro-
cessed by a multi-layer perceptron. Then, el-
ement-wise addition is used to integrate the

results of GMP and GAP. After that, a sigmoid
activation function is applied to the com-
bined data, resulting in a channel weight
feature map that assigns a weight to each
channel based on its significance. Finally, an
element-wise multiplication is performed

between the channel weight matrix and the
original feature map (F) as:

m

F' =FxWeg,

Table 4. Parameter values at each layer of the modified VGG19 model

Layer name Activation maps Learnable parameters Total learnable
parameters
Input 512x512%x3 = 0
block1_conv1 512x512%x 64 Weights: 3 x 3 x 3 X 64, bias: 64 1,792
block1_conv2 512x 512 x 64 Weights: 3 X 3 X 64 x 64, bias: 64 36,928
block1_pool 256 x 256 x 64 - 0
block2_conv1 256 x 256 x 128 Weights: 3 x 3 X 64 x 128, bias: 128 73,856
block2_conv2 256 x 256 x 128 Weights: 3 x 3 x 128 x 128, bias: 128 147,584
:gtf:a_lizationj 256 x 256 x 128 Offset: 128, scale: 128 512
block2_pool 128 x 128 x 128 - 0
block3_conv1 128 x 128 x 256 Weights: 3 x 3 x 128 x 256, bias: 256 295,168
;‘é‘;?ggeg g 64 X 64 X 256 - 0
block3_conv2 64 X 64 x 256 Weights: 3 x 3 x 256 x 256, bias: 256 590,080
block3_conv3 64 X 64 x 256 Weights: 3 x 3 x 256 X 256, bias: 256 590,080
block3_conv4 64 X 64 X 256 Weights: 3 x 3 x 256 x 256, bias: 256 590,080
:?rf:z:lization_z 64 X 64 X 256 Offset: 256, scale: 256 1,024
block3_pool 64 X 64 X 256 - 0
block4_conv1 32%x32x512 Weights: 3 x 3 X 256 x 512, bias: 512 1,180,160
block4_conv2 32x32x512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
max_pooling2d_1 16X 16 %512 - 0
block4_conv3 16X 16 %512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
block4_conv4 16X 16 %512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
:gtf:a_lization_?: 16 X 16 X512 Offset: 512, scale: 512 2,048
block4_pool 16 x 16 %512 - 0
block5_conv1 16X 16 %512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
block5_conv2 16X 16 %512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
block5_conv3 16X 16 %512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
block5_conv4 16 X 16 X 512 Weights: 3 x 3 x 512 x 512, bias: 512 2,359,808
ﬁztrf:a_lization_ 4 8x8x512 Offset: 512, scale: 512 2,048
block5_pool 8x8x512 - 0
flatten_1 8,192 - 0
dense_3 4,096 Weights: 8,192 X 4,096, bias: 4,096 33,558,528
dense_4 4,096 Weights: 4,096 x 4,096, bias: 4,096 16,781,312
dense_5 3 Weights: 4,096 X 3, bias: 3 12,291
SoftMa x 1x1x%x3 - 0
g'j:;ﬁcation 1x1x3 - 0
Number of total learnable parameters 70,379,331
Yazeed Alashban.
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where F'is the weighted feature map, F is
the input feature map, and W_, is the channel
weight matrix. The channel weight matrix is
computed as follows:

(2)

Wea(F) = 0(f cencoaer(AVGPOOLF)) + f cencoaer(MaxPool(F)))

where the global max-pooling operation
is represented by MaxPool, the average pool-
ing operation is AvgPool, o is the sigmoid
function, and f_is the channel encoder.

Spatial attention functions were analyzed
using GAP and GMP to compute the average
and maximum spatial responses on the input
feature map. These resulting responses are
utilized to combine into a set of descriptive
features. A spatial weight feature map (WS) is
produced by activation with a sigmoid func-
tion and is multiplied element-wise by the
original feature map. This approach distills
the model’s focus to important regions of the
network, thus identifying the spatial atten-
tion process, given as:

(3)
F'=F xWs,

where W, is the spatial weight matrix and
is calculated as:

(4)

Wsa(F) = 6(f cencoder (AVgP0OL(F))Of cencoder (MaxPool(F)))

The proposed model leverages YOLOvV5
to preserve the original network topology
while extracting features from the three
feature layers of the backbone network. The
head network receives these features after
they have been concatenated and sent for
object detection. The head network’s ability
to comprehend complex spatial feature ar-
rangements in the data is improved by inte-
grating the CBAM. When dealing with small
objects or intricate details, such as tiny l