The interaction between irreversible electroporation therapy (IRE) and embolization material using a validated vegetal model: an experimental study

Philip Chan
Catriona McLean
Stephen Chan
Gerard S. Goh

PURPOSE
Irreversible electroporation (IRE) is a nonthermal tumor ablation technique that induces cell apoptosis while preserving extracellular architecture. Surgical clips and embolic agents may lie adjacent to, or within, the target lesion. It is unknown to date if IRE causes degradation to the embolic agents or surgical clips that may have adverse effects to patients. We aimed to examine the effects of the IRE on the morphology of various embolic agents and the effects of these agents to the ablation field using a previously validated vegetal model.

METHODS
Metallic surgical clips and various metallic and nonmetallic embolic agents were inserted within the center of the tuber ablation field. Additionally, clips were inserted on the edge and outside the ablation field. One tuber was ablated as a control. Ablation settings were based on previous published experiments. Tubers were imaged with magnetic resonance imaging (MRI) 18–24 hours after ablation and the ablated field dimensions were measured. Nonmetallic embolic agents were examined microscopically by the pathologist.

RESULTS
Nonmetallic agents did not affect the ablation pattern. Metallic implants, however, caused arcing of the ablation margins. There was no macroscopic or microscopic degradation to the agents after IRE.

CONCLUSION
The ablation zone arced in the presence of surgical clips at the edge or outside the ablation margins; therefore, nearby critical structures may be susceptible to the effects of IRE. Furthermore, there was no physical degradation of the embolic agents or surgical clips, and this may have importance when considering IRE ablation of previously embolized lesions in vivo.

Ablation therapy in the liver may be used for hepatocellular carcinoma or limited hepatic metastasis. However, thermal ablation options are limited if they are near major structures, such as bile ducts, vessels, bowel, gallbladder, diaphragm, lung, right kidney and liver capsule (1) due to risk of thermal damage. Irreversible electroporation (IRE) is a nonthermal tumor ablation technique and has been deemed safe and feasible in tumors which are adjacent to critical structures (2–4).

However, iatrogenic material, such as surgical clips, sutures, stents and embolic materials, are not uncommonly encountered adjacent to or, within, the target lesion. Several contraindications have been considered for IRE of the liver, including presence of implanted electronic devices or implanted devices with metal parts (5).

Previous vegetal model has shown that “raw potato tuber is a good alternative to animal tissue for studying some specific bioelectric aspects of electroporation” (6, 7). Neal et al. (8) has successfully studied the effects of metallic brachytherapy implants on electroporation therapy based on this vegetal model.

In this pilot experiment, we aimed to determine two endpoints: 1) Does IRE affect iatrogenic material macroscopically and microscopically, and 2) does iatrogenic material affect the IRE ablation zone? The findings of this experiment may provide guidance in planning IRE and predicting ablation outcome in patients who have been previously treated with embolics or surgery.
Methods

Ethics application was not required for this nonhuman, nonanimal experiment. A variety of metallic and nonmetallic embolic agents and metallic surgical clips (Table 1) were inserted into 18 large (>8 cm) potato tubers. A radiofrequency (RFA) needle guide was used to maintain standardized positions of the ablation needles. It has a central aperture and three peripheral apertures 2 cm apart from each other. Coaxial needles (15G; Bard) were used to insert the embolic agents and surgical clips. The experiment was conducted using clinical IRE probes and the NanoKnife® software system (Angiodynamics).

Experimental setup

A 15G coaxial needle was inserted into the center of the potato tuber using the central hole of the RFA needle guide (Fig. 1). Two other needles (i.e., blunt or sharp stylet of the coaxial needle) may be positioned in the peripheral apertures of the needle guide to prevent rotation and displacement of the needle guide. Semi-solid (polyvinyl alcohol (PVA), Gelfoam slurry, Embozenes) and liquid (glue) embolic agents were injected through the coaxial needle after withdrawing the stylet. While withdrawing the coaxial needle, additional material was gently injected into the needle tract. Hilal Microcoil was deployed using the 15G coaxial needle.

Surgical clips were closed by forceps and loaded into the distal end of the coaxial needle (folded limbs within the hollow needle). A needle track was created, using the needle guide, in the tuber with the sharp stylet. The needle guide was stabilized with two needles or stylets in the peripheral apertures prior removal of the sharp stylet. This prevented displacement or rotation of the guide after creating the central track. The loaded coaxial needle was then inserted into the needle track and the surgical clip deployed by pushing the clip with the blunt stylet.

All materials were injected into the center of the ablation zone by using the central aperture of the RFA needle guide. Two additional locations were selected for the surgical clips, at the edge of and outside the ablation margins.

Upon satisfactory positioning of the iatrogenic material, IRE probes were placed in the remaining apertures of the RFA needle guide.

Prior to IRE ablation, tubers containing metallic material (Hilal Microcoil and surgical clips) were imaged with computed tomography (CT) with IRE probes in situ to confirm position of the metallic agents. Nonmetallic agents did not undergo CT imaging.

A schematic diagram (Fig. 2) shows the details of the experimental setup.

IRE ablation

Needles were placed 2 cm apart using the needle guide and each had 2 cm exposure at the tip. Markers on the probes were used to ensure the same depths were inserted with each probe. Ablation settings were based on previous experiments (8). Pre-experimental tests were conducted due to differences in hardware, and settings were fine-tuned until tuber ablation size was consistently well within the margins of the tuber, but also within parameters commonly used in clinical electroporation. Target amperage was 20–30 amp, similar to clinical IRE ablation.

Ten pulses of 90 µs pulse length were delivered to each probe pair. This resulted in 10 pulses in the two-probe experi-

Table 1. Embolization material used for the experiment were grouped into metallic and nonmetallic agents

<table>
<thead>
<tr>
<th>Metallic group</th>
<th>Cook Hilal® Embolization Microcoil (Cook Inc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weck® Horizon™ metal ligation clips (Teleflex)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonmetallic group</th>
<th>Contour™ particles (355–500mm) (Boston Scientific)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Histoacryl® (B. Braun Melsungen AG)</td>
</tr>
<tr>
<td></td>
<td>Gelfoam® slurry (Pfizer)</td>
</tr>
<tr>
<td></td>
<td>Embozene™ Microspheres (Boston Scientific) size in 250 (“Embozene 250”) and 500 micrometers (“Embozene 500”)</td>
</tr>
</tbody>
</table>

Figure 1. Experimental setup: using the RFA needle guide, a 15G coaxial needle was used to deliver the embolic agents into the potato tuber via the center aperture. IRE probes were then positioned into the remaining apertures.
Tubers were then prepared in tissue block and stained using standard hematoxylin and eosin (H–E), for microscopic examination. Additional preparation was performed for nonablated Embozeenes within fibrin. Examination of the microscopic images was reviewed by three independent pathologists.

Statistical analysis

Statistical analysis was not performed due to the inherent observational design of the experiment.

Results

The measurements of the ablation zone size are shown in Table 2. We found that the overall dimensions of the ablation zone from the three-probe experiment were larger and more predictable than the two-probe experiment (Fig. 3).

There was minimal difference between the ablation zone dimensions of the nonmetallic embolic agents (PVA particles, Histocryl, Gelfoam and Embozeenes) for both the two-probe and three-probe experiment. With the exception of Embozene 500, the mean percentage difference was 0.88% (0%–3.27%). There was an 8.7% difference for the Embozene 500 in the two-probe experiment. However, the dimensions were the smallest of all ablated tubers, measuring 2.5×2.3 mm, without asymmetric arcing, suggesting inhomogeneous ablation.

The metallic agents demonstrated more dramatic changes to the ablation sizes. When the surgical clips were positioned at the edge (two-probe experiment only) and out of (both experiments) the ablation margin, there was noticeable distortion of the ablation margins with arcing towards the side of the surgical clips, increasing the diameter of the ablation zone (Fig. 4). There was a 6.6%–12% difference between the dimensions.

On macroscopic examinations, all iatrogenic materials were unaffected. There was no degradation or distortion of the agents.

Microscopic examinations of Gelfoam, glue, PVA and Embozeenes are shown in Fig. 5. The morphology was expected and deemed not to be degraded by IRE.

Microscopic examination of the Embozene demonstrated fragmentation of the embolic agents. In view of this, another microscopic examination was performed on nonablated spheres, this time fixed in fibrin. This preparation technique also resulted in fragmentation of Embozene (Fig. 6).

Figure 2. a, b. Schematic diagram of the experimental setup as viewed from the top (left) and from the side (right) of the tuber (solid oval) in the three probe (a) and two probe (b) experiments. The embolic agents were placed using the central aperture (star) of the RFA guide (dotted triangle) and the IRE probes were placed in the three corner apertures (small solid circles). Surgical clips were additionally placed at the edge of (shaded circle) and outside (hollow circle) the ablation zone (dotted oval). On the side view, the IRE probe trajectory is also identified (dotted line).
IRE is currently used to treat tumors of the liver, kidneys, pancreas and prostate (2, 9). Other areas under investigation include lung, breast, brain, and spinal cord (2, 10, 11). IRE induces cell apoptosis by delivering series of short pulses of direct current between two or more probes. These pulses create tiny defects within the cell membranes, termed “nanopores” or “conductive pores” (9). In reversible electroporation, nanopores are temporary and the cell adapts to the changes, allowing passage of macromolecules and may even facilitate treatment with chemotherapy or genetic material (8). In irreversible electroporation, nanopores become permanent. The cell loses its ability to maintain homeostasis, leading to apoptosis. Another unique feature of IRE is that it has the ability to preserve the extracellular matrix and critical surrounding structures. In the liver, these critical structures include hepatic artery, portal veins, hepatic veins and bile ducts (12). Another advantage of IRE is that it is not susceptible to heat sink effect when adjacent to blood vessels (2).

In our experiment, we were able to observe that most iatrogenic agents were not physically altered by direct electric currents, except for Embozene. Embozene is constructed with a central hydrogel core and an external Polyzene®-F coat (13). Fragmentation was unexpected since we did not expect direct current to affect the nonconductive components of the microspheres. Interestingly, nonablated spheres, prepared in a fibrin, also demonstrated similar fragmentation. Given similar pattern of fragmentation on both preparation techniques, the overall impression was degradation during preparation process rather than IRE ablation. We hypothesize that the spheres have been cut during slicing of the tissue block or exposure to preparation solutions may have degraded the Embozene coating.

Importantly, we have observed distortion of the ablation zone in the presence of metallic agents. The results were more pronounced on the three-probe experiment as the ablation zones were larger and more consistent. The surgical clip positioned at the edge and out of the ablation margins showed asymmetric arcing towards the side of the clips (Fig. 4). However, there was no demonstrable arcing with the centrally positioned clip and coil, despite both being composed of metal. It was not possible to ascertain

<table>
<thead>
<tr>
<th>Agent</th>
<th>Three probes</th>
<th>Two probes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimensions (mm)</td>
<td>Dimensions (mm)</td>
<td>Difference (%)</td>
<td>Difference (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long</td>
<td>Short</td>
<td>Difference (%)</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>PVA</td>
<td>4.73</td>
<td>4.72</td>
<td>0.21%</td>
<td>3.47</td>
<td>3.36</td>
</tr>
<tr>
<td>Glue</td>
<td>4.52</td>
<td>4.48</td>
<td>0.89%</td>
<td>3.68</td>
<td>3.68</td>
</tr>
<tr>
<td>Gelfoam</td>
<td>5.2</td>
<td>5.12</td>
<td>1.56%</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Embozene 250</td>
<td>3.42</td>
<td>3.39</td>
<td>0.88%</td>
<td>3.25</td>
<td>3.22</td>
</tr>
<tr>
<td>Embozene 500</td>
<td>4.77</td>
<td>4.76</td>
<td>0.21%</td>
<td>2.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Ablation was performed once on each iatrogenic material and single measurements were obtained on orthogonal axis. PVA, polyvinyl alcohol; Clip C/E/O, clip located in the center, edge, and out of ablation margins.

Discussion

Vegetal model of IRE ablation in the presence of surgical clips and embolization materials
on imaging alone if there was disturbance in the electric current with these centrally positioned metallic materials. These preliminary findings have implications in clinical practice, especially in the post-treatment liver. For example, it is likely safe to consider IRE ablation technique for a post-transarterial chemoembolization (TACE) recurrent hepatocellular carcinoma, even if the nonmetallic TACE embolic agents are adjacent to or within the ablation zone. On the other hand, if there are multiple metallic surgical clips after resection of a colorectal metastasis, practitioners must cautiously approach these as conductive materials have been shown to arc the ablation zone, potentially increasing ablation size and damaging nearby critical structures.

Examining current literature, there are single case reports that show conflicting evidence on the safety of IRE in the presence of foreign material. Mansson et al. (5) reported fatal outcome in a patient who received palliative IRE ablation of a pancreatic head neoplasm adjacent to a metallic common bile duct stent. The patient died three months later due to complications of perforated duodenum and pseudoaneurysm of a pancreatic branch of the superior mesenteric artery. The author suggested that the presence of a metallic stent in the vicinity may have resulted in this catastrophic outcome and as such, removal of such metallic parts should be mandated should IRE ablation be performed.

Melenhorst et al. (14) described ablation of a Klatskin tumor encasing a metallic Wallstent biliary stent. The metallic stent was well within the ablation zone. Niessen et al. (15) described a patient who had hepatocellular carcinoma adjacent to a transjugal intrahepatic portosystemic shunt (TIPS) stent graft. Both authors did not report any postprocedural complications and tumors were completely ablated.

In an animal experiment with porcine models, Ben-David et al. (16) placed metallic grounding plates within 1–2 cm of the active portion of the IRE electrodes. This resulted in distortion of the ablation zone with a displacement of up to 0.8±0.6 cm, showing that conductive materials can affect the distribution of the ablation zone.

Our two-probe experiment showed smaller and less predictable ablation shape and morphology, most likely due to the much smaller total number of pulses delivered (10 pulses versus 30 pulses) leading to inadequate electroporation of the tube. Not only did this part of the experiment not yield additional information, it created potential confounding results (as in Embozene 500).

There were several limitations to our experiment. As a pilot study, we have only performed each experimental setup on one potato. For future experiments, multiple potatoes should be used for each setup to determine the reproducibility of the results, especially when the ablation zone has been distorted by conductive material, or when the ablation morphology is unexpected or indeterminate, such as the case of the Embozene 500 in our two-probe experiment. Moreover, each embolic material should be subjected to the same setup with multiple positions relating to the ablation margin (i.e., central, edge and out of margin), similar to the surgical clip setup.
Two additional set of information were not obtained with this experiment but would be useful for analysis. First, conduc-
tance information would be useful in de-
tecting any change in electrical behavior of the electroporation, especially in the presence of conductive material. Conduc-
tive material may impede conductance and therefore result in generation of thermal
energy. Second, we have not been able to measure thermal changes within the tuber
during electroporation. This information would be particularly useful to observe, es-
pecially adjacent to the iatrogenic material. If conductive material causes focal increase
in thermal energy, the advantage of the nonthermal property of IRE is rendered de-
batable. Finally, we had used MRI as a sur-
rogate for ablation zone. However, it was
impossible to distinguish between thermal
and nonthermal ablation using imaging.
Therefore, while the arcing is probably due
to distortion of the electric field, the possi-
bility of heat generation leading to a larger
field of thermal ablation remains.

In conclusion, based on this pilot exper-
iment, ablation zone arcing was observed
in the presence of surgical clips at the edge
or outside the ablation margins, although
the clips were not physically degraded.
Translating to clinical practice, if conductive
material such as surgical clips are present in
or adjacent to the ablation target, IRE must
be carefully considered as critical structures
may be susceptible. Moreover, it would ap-
ppear that there is no physical degradation of nonmetallic embolic agents with little
effect on the ablation field. This may have
importance when considering IRE ablation
of lesions previously embolized.

Financial disclosure
The authors acknowledge a small financial sup-
port provided by the Senior Medical Staff Associa-
tion, Alfred Hospital, Melbourne, Australia.

Conflict of interest disclosure
The authors declared no conflicts of interest.

References
1. Teratani T, Yoshida H, Shiina S, et al. Radiofre-
quency ablation for hepatocellular carcinoma in so-called high-risk locations. Hepatology 2006; 43:1101–1108. [CrossRef]
621. [CrossRef]
versible electroporation for nonthermal tumor ablating in patients with hepatocellular carci-
noma: initial clinical experience in Japan. Jpn J Radiol 2015; 33:424–432. [CrossRef]
5. Mansson C, Nilsson A, Karlson BM. Severe complica-
tions with irreversible electroporation of the pancreas in the presence of a metallic stent: a warning of a procedure that never should be performed. Acta Radiol Short Rep 2014; 3:20479816145536409. [CrossRef]
6. Ivorra A, Mir LM, Rubinsky B. Electric field re-
distribution during tissue electroporation: its poten-
7. Ivorra A, Mir LM, Rubinsky B. Electric field redistri-
bution due to conductivity changes during tissue electroporation: experiments with a simple vege-
effects of metallic implants on electroporation
therapies: feasibility of irreversible electropora-
tion for brachytherapy salvage. Cardiovasc In-
tervent Radiol 2013; 36:1638–1645. [CrossRef]
versible electroporation: state of the art. Onco
Targets Ther 2016; 9:2437–2446. [CrossRef]
10. Thomson KR, Kavnoudias H, Neal RE, 2nd. Intro-
duction to irreversible electroporation–princi-
tles and techniques. Tech Vasc Interv Radiol
2015; 18:128–134. [CrossRef]
11. Li S, Chen F, Shen L, Zeng Q, Wu P. Percutane-
ous irreversible electroporation for breast tis-
sue and breast cancer: safety, feasibility, skin
effects and radiologic-pathologic correlation
[CrossRef]
12. Lee EW, Thai S, Kee ST. Irreversible electropora-
1834. [CrossRef]
14. Melenhorst MC, Scheffer HJ, Vroemen LG, Ka-
zemier G, van den Tol MP, Meijerink MR. Per-
cutaneous irreversible electroporation of un-
resectable hilar cholangiocarcinoma (Klatskin
15. Niessen C, Jung EM, Wohlgemuth WA, et al. Ir-
reversible electroporation of a hepatocellular carcinoma lesion adjacent to a transjugular intrahepatic portosystemic shunt stent graft. Korean J Radiol 2013; 14:797–800. [CrossRef]
versible electroporation: treatment effect is sus-
pective to local environment and tissue
properties. Radiology 2013; 269:738–747. [CrossRef]

Vegetal model of IRE ablation in the presence of surgical clips and embolization materials • 309